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SUMMARY

A two-stage parametric Bayesian method is proposed to examine the association between a can-

didate gene and the occurrence of a disease after accounting for population substructure. This proce-

dure, implemented via a Markov chain Monte Carlo numerical integration technique, first estimates

the posterior probability of different unknown population substructures and then integrates this in-

formation into a disease-gene association model through the technique of Bayesian model averaging.

The model relaxes certain assumptions of previous analyses and provides a unified computational

framework to obtain an estimate of the log odds ratio parameter corresponding to the genetic factor

after allowing for the allele frequencies to vary across subpopulations. The uncertainty in estimating

the population substructure is taken into account while providing credible intervals for parameters in

the disease-gene association model. Simulations on unmatched case-control studies that mimic an

admixed Argentinean population are performed to demonstrate the statistical properties of our model.

The method is also applied to a real dataset coming from a genetic association study on obesity.
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1 Introduction

The evaluation of the association between molecular markers and disease status can be used to study

the genetic basis of common human diseases (Risch and Merikangas, 1996; Morton and Collins,

1998; Sullivan et al., 2001). The basic principle for such so-called association studies arises from

the dependence of allele frequencies at marker loci upon those of disease variants, that is, the linkage

disequilibria between alleles from different genetic loci. A significant association detected between a

marker and the disease can be considered as evidence for close physical linkage between the marker

and a disease locus, given that the linkage disequilibrium between any two genes always decays

exponentially with their genetic distance in a random mating idealized population (Lynch and Walsh,

1998).

In practice, however, there rarely exists an idealized population as a result of the action of vari-

ous evolutionary forces (Lynch and Walsh, 1998). Evolutionary forces, such as population structure

and population admixture, operating on a population can result in spurious associations between a

phenotype and markers that are not linked to any causative loci. The presence of spurious associa-

tion suggests that the detected statistical association does not necessarily imply the physical linkage

between the disease phenotype and arbitrary markers that have no physical linkage to causative loci

(Lander and Schork, 1994). A classic example of spurious association caused by population substruc-

ture is presented in Knowler et al. (1988). In this study, based on a sample of Native Americans of the

Pima and Papago tribes, a very strong negative association between the Gm haplotype Gm3;5,13,14

and type 2 or non-insulin-dependent diabetes mellitus was detected. One might conclude from this

observation that the absence of this haplotype, or the presence of a closely linked gene is a causal

risk factor for the disease. However Gm3;5,13,14 is a marker for Caucasian admixture, and it is most

likely that the presence of Caucasian alleles and decrease in Indian alleles led to lower susceptibility

to type 2 diabetes, rather than the direct action of the haplotype or of a closely linked locus. This

study demonstrates the effects of confounding due to population substructure, and the importance

of considering genetic admixture while investigating the association between a disease and genetic

markers.
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In order to overcome the problem of spurious associations, many different genetic strategies have

been proposed. Spielman et al. (1993) used the transmission disequilibrium test (TDT) to measure

the association between a candidate gene and disease status by incorporating the genotypes of parents

of affected individuals. This test has been instrumental in genetic association studies of human dis-

eases (Spielman and Evens, 1998), but it is often limited because of difficulties with DNA sampling.

For this reason, a simple case-control design that uses affected individuals and unrelated controls has

recently received increased attention (Freedman et al., 2004; Marchini et al., 2004). A number of ap-

proaches have been developed to avoid the generation of spurious associations in case-control studies

of disease-gene association. For a comprehensive recent review of admixture mapping for complex

traits see McKeigue (2005).

Pritchard and colleagues used multilocus genotype data to estimate population substructure. They

proposed a model-based clustering method to identify the population structure by genotyping samples

at additional unlinked markers (Pritchard et al., 2000a). This method was then extended to allow for

the linkage between different markers (Falush et al., 2003). A software package, STRUCTURE, has

been written to implement their algorithms that consider both linked and unlinked markers. Pritchard

et al. (2000b) proposed a two-stage procedure in which first the population structure is inferred by

employing the method of Pritchard et al.(2000a), and then the tests of association within subpopula-

tions are conducted conditional on the imputed substructure. However, this method does not develop a

model for the probability of disease incidence and cannot be generalized easily to provide estimates of

the odds ratio corresponding to the genetic risk factor. Hoggart et al. (2003, 2004) developed a com-

bination of Bayesian and classical approaches for association studies based on the admixture between

populations with different ancestries. Apart from STRUCTURE, two other softwares which employ

Bayesian ideas for statistical modeling of genetic data from admixed population are ADMIXMAP

(Hoggart et al., 2003, 2004) and ANCESTRYMAP (Patterson et al., 2004).

Different from the above treatments, Satten et al. (2001) provided a novel latent-class analysis

to study the association between the disease and the candidate genes based on a series of additional

markers that are in linkage equilibrium with each other and with the candidate genes within subpop-
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ulations. Based on the Akaike information criterion (AIC), their method can estimate the number

of subpopulations. But by either assuming the disease to be rare, or collapsing multiple genotypes

into various binary genotypes, their method has not fully capitalized on the information about the

multiple-genotype inheritance of the candidate gene.

In this article, we provide an alternative parametric Bayesian model for inferring on disease-gene

association after accounting for population substructure. As in Satten et al. (2001), we use the

latent-class approach to estimate the association parameters, while we account for the population sub-

structure in a way similar to that of Pritchard et al. (2000a). However, unlike Satten et al. (2001), our

analysis does not require the rare disease assumption or analyzing multicategory genotypes by several

analyses using various possible binary genotypes of the candidate gene. Our model can also handle

multi-allelic genotypes of the candidate genes, extending on earlier approaches for the genotypic

analysis of only biallelic loci. The computational strategy followed in Satten et al. (2001) involved

use of the E-M algorithm to estimate the parameters in the model, combined with a parametric boot-

strap strategy to obtain standard error estimates. The Markov chain Monte Carlo strategy designed

in this paper simplifies the computational complexity, with posterior standard deviation estimates and

credible intervals being obtained from the random observations generated from the full conditional

distributions of the parameters.

We should emphasize that in our Bayesian analysis, inference on the disease-gene association is

not carried out on the basis of the particular imputed structure as done in Pritchard et al. (2000a). In-

stead, through use of model averaging (see for example, Madigan and Raftery (1994)), the association

parameters are estimated by incorporating the uncertainty in estimating the substructure. In particu-

lar, instead of assuming the number of subpopulations I to be fixed, we put a prior on I and obtain

the posterior distribution of I . For each possible value of I with positive posterior probability, we

then estimate the association parameters in the disease-gene risk model. Finally we take the weighted

average of these estimates, the weights being proportional to the posterior probabilities of the differ-

ent values of I . The explicit model averaging formulas are given in Section 3.2. Our analysis thus

combines the substructure estimation ideas of Pritchard et al. (2000a) using Bayesian clustering, and
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the latent class disease risk models of Satten et al. (2001) posed in a purely frequentist framework,

through a more general unified Bayesian approach. The paper presents a novel two-stage model with

a clustering algorithm for inferring on cryptic population structure, followed by a logistic model for

disease incidence, tied together through the technique of Bayesian model averaging.

The outline of the paper is as follows. Section 2 states both the statistical model and the genetic

model, and briefly introduces the methods in Pritchard et al. (2000a) to estimate the number of

subpopulations. Section 3 derives the underlying likelihood. We also introduce in this section the

appropriate priors for the model parameters and obtain their estimates based on the posteriors. The

posteriors are analytically intractable. So the Bayesian procedure is implemented by the Markov

chain Monte Carlo numerical integration technique. In Section 4, we state our simulation strategy

and provide results on simulated case-control studies under both a rare disease and a common disease

assumption. Our simulation studies are conducted in the same setting as in Satten et al. (2001)

and mimic an admixed Argentinean population as described in Sala et al. (1998, 1999). Under the

rare disease assumption, we compare our results with those obtained in Satten et al. (2001). In

Section 5, we apply our methods to real data collected in a genetic association study with obesity as

the disease outcome and the β-adrenergic receptor β2AR as the candidate gene under investigation.

Some concluding remarks are made in Section 6.

2 Model and Notation

2.1 Statistical Model

Let the binary variable D denote disease and let G be a (possibly vector-valued) genetic risk factor. We

assume that the overall population of size N is comprised of I subpopulations, each having different

frequencies of G and D. By the unmeasured covariate Z, we indicate the subpopulation to which an

individual belongs. Thus, Dj(= 1 or 0) corresponds to the presence or absence of a disease for the

jth individual with a genetic risk factor Gj , j = 1, · · · , N .

We assume Gj to be a univariate discrete random variable, taking M + 1 values g0(= 0), g1, · · · ,
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gM . We assume that the prospective conditional logistic distribution for the disease status is

Pr(Dj = 1|Gj = gm, Z = i) = H{β0i + β1m}, m = 0, · · · , M, (1)

where H(u) = {1 + exp(−u)}−1. Here β0i is a term representing the subpopulation effect on the

probability of disease for individuals belonging to a particular subpopulation i, and β1m is the co-

efficient corresponding to the genetic exposure variable in the above logistic regression model. For

parameter identifiability, we set β10 = 0. The method can immediately be extended to a vector valued

genetic risk factor Gj for individual j.

2.2 Genetic Model

Since different subpopulations may have different frequencies of other marker genes, we use a latent-

class approach to infer about the population substructure by using information on those additional

marker loci. Consider xc
l as the allele at marker l on chromosome c =1, 2 (labeling of the two chromo-

somes in a given pair as 1 or 2 is arbitrary) and let X = (x1
1, x2

1, · · · , x1
L, x2

L), where L is the number

of marker loci under consideration.

First, we assume that the genes at the additional marker loci are unrelated to disease, that is

Pr(Dj = 1|Gj, Xj, Z = i) = Pr(Dj = 1|Gj, Z = i). (2)

In the analysis that follows, we assume that Hardy-Weinberg equilibrium holds for each subpopula-

tion. Human populations rarely show much divergence from the Hardy-Weinberg equilibrium once

population substructure has been accounted for (Report of Committee on DNA Forensic Science

1996, pp. 104 and references cited therein).

Further, by choosing additional marker loci on different chromosomes from the chromosome

where G is found, we first assume that the additional mutually independent marker genes are in
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linkage equilibrium with the candidate gene G, so that

Pr(Gj, Xj|Z = i) = Pr(Gj|Z = i)× Pr(Xj|Z = i). (3)

By Hardy-Weinberg equilibrium,

Pr(Xj|Z = i) =
L∏

l=1

2∏
c=1

plixc
l
, (4)

where plixc
l

is the proportion of persons in subpopulation i having allele xc
l at marker loci l, L being

the number of marker loci.

Suppose the candidate gene G has w alleles, e.g., a1, · · · , aw, and the frequency of the allele au

(u = 1, · · · , w) in the ith subpopulation is

ρiu = Pr[Gc
l = au|Z = i].

Then by Hardy-Weinberg equilibrium the probabilities of the genotypes of G (auav) (u, v = 1, · · · , w)

are given by:

Pr[G = auav|Z = i] =

 ρ2
iu, u = v;

2ρiuρiv, u 6= v.
(5)

2.3 Inference on I for the model with admixture

We consider the situation where we have multilocus genotype data from individuals sampled from a

population with possibly unknown structure. Pritchard et al. (2000a) used the genotypes of a sample

of individuals to identify the presence of population structure which is difficult to detect using visible

characters, but may be significant in genetic terms. As Pritchard et al. (2000a) pointed out, the

problem of inferring on the number of unknown populations, I , present in a data set is a very difficult

task. In a Bayesian paradigm, with a suitably chosen prior distribution on I , one can base inference
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for I on the posterior distribution:

P (I|X) ∝ P (X|I)P (I), (6)

where X denotes the vector of genotypes of the sampled individuals including the candidate gene

G. Let Z denote the unknown population of origin of the individuals, P denote the unknown al-

lele frequency vector in all populations, and Q denote the vector of admixture proportions for each

individual. The harmonic mean estimator is one of the simplest ways of estimating P (X|I),

1

P (X|I)
=

∫
P (Z,P,Q|X, I)

P (X|Z,P,Q, I)
dZdPdQ ≈ 1

K

K∑
k=1

1

P (X|Z(k),P(k),Q(k), I)
. (7)

However this estimator is notoriously unstable, often having infinite variance, and thus poses severe

computational challenges. Pritchard et al. (2000a) described an alternative approach which is a more

ad hoc but effective approach based on the Bayesian deviance function

DV (Z,P,Q) = −2 log P (X|Z,P,Q). (8)

Let k = 1, 2, · · · denote the k-th iteration in the Markov chain. One estimates the conditional

mean and variance of the deviance function DV given X as follows:

E(DV (Z,P,Q)|X) ≈ 1

K

K∑
k=1

−2 log P (X|Z(k),P(k),Q(k)) = µ̂,

V ar(DV (Z,P,Q)|X) ≈ 1

K

K∑
k=1

(−2 log P (X|Z(k),P(k),Q(k))− µ̂)2 = σ̂2.

By assuming that the conditional distribution of the deviance function DV given X is normal, it

follows from (7) that

−2 log P (X|I) ≈ µ̂ + σ̂2/4. (9)

An analytical explanation of this approximation is provided in Appendix A. An alternative interpreta-
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tion of this method is that model selection is based on penalizing the mean of the Bayesian deviance

by a quarter of its variance. Pritchard et al. (2000a) pointed out that replacing the assumption of

normality with the assumption of the Bayesian deviance function being distributed as a Gamma ran-

dom variable may be asymptotically more justifiable, but makes little or no difference in terms of

estimation accuracy in practical applications.

One may use (9) to estimate P (X|I) for each I and then substitute the estimate into (6) to obtain

approximate estimates of P (I|X) (see Pritchard et al. 2000a, for a detailed algorithm). One would

then impute the estimated substructure while conducting tests for disease-gene association. We will

essentially follow the same technique for estimating P (I|X) and embed the derived information into

a disease risk model as described in the following section.

3 Likelihood and Priors

In this section, we derive the likelihood function, state our prior distributions and derive the posteriors.

The key aspect of the modeling is in how we develop algorithms for estimating the model parameters

and at the same time account for the population structure in our framework.

3.1 Likelihood

Because different subpopulations may have different frequencies of other marker genes, we make

inference based on the marginal joint distribution of D, G and X , summing over all possible values

of Z, the latent variate. Let Pr(Z = i) = qi, which is the proportion of persons in subpopulation i.

Note that for subject j, Gj takes one of the values gm, m = 0, 1, · · · , M. By (3) and (4), for given I ,

the full likelihood LI is factorized as follows:

LI =
N∏

j=1

Pr(Dj, Gj, Xj) =
N∏

j=1

I∑
i=1

[
Pr(Z = i)× Pr(Gj, Xj|Z = i)× Pr(Dj|Gj, Z = i)

]
=

N∏
j=1

I∑
i=1

[
qi ×

{ L∏
l=1

2∏
c=1

plixc
l

}
× Pr(Gj = gm|Z = i)× exp{Dj × (β0i + β1m)}

1 + exp{β0i + β1m}

]
. (10)
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where Pr(Gj|Z = i) is a function of ρiu (u = 1, · · · , w) as described in (5), and L is the number of

marker loci which are in linkage equilibrium with G.

We use a marginal likelihood rather than a conditional likelihood approach. The likelihood in-

volves parameters of interest β1m (m = 1, · · · , M ), and the nuisance parameters β0i, ρiu, qi and

plix(i = 1, · · · , I; ∀ l and ∀ x), which grow in direct proportion to the number of subpopulations.

This gives rise to the well known Neyman-Scott phenomenon where MLEs turn out to be inconsistent

if I grows with sample size. Typically we deal with I between 1 through 7, and handling nuisance

parameters is not a difficult issue in such scenarios. However, the marginal model does contain a

large number of parameters, and we carry out Bayesian inference by introducing appropriate prior

distributions for these parameters.

3.2 Priors and Posteriors

The main problem is to estimate the regression parameters β1m , m = 1, · · · , M ; we consider the

following mutually independent normal priors:

β0i ∼ Normal (µβ0i
, σ2

β0i
), i = 1, · · · , I;

β1m ∼ Normal (µβ1m , σ2
β1m

), m = 1, · · · , M.

When inferring the number of subpopulations I , we consider a discrete uniform prior on the domain

of I . The priors for P and Q correspondingly are the following:

(q1, · · · , qI) ∼ Dirichlet(α, · · · , α);

ρiu ∼ Beta(ai, bi);

(pli1, pli2, · · · , pliXl
) ∼ Dirichlet(λpli1

, λpli2
, · · · , λpliXl

).

With the above model and prior specifications, one can obtain the full conditional distributions for the

parameters β0i, β1m, ρiu, qi and plix. The full conditionals are given in the Appendix B. None of the

10



conditionals has a standard distributional form.

For each given value of I , the parameters of interest can be estimated by generating random ob-

servations from the full conditionals using a Markov chain Monte Carlo numerical integration scheme

and then taking averages of the generated observations. Corresponding to each value of I , we also

have associated posterior probabilities P (I|X) as discussed in section 2.3. Therefore, by setting

θ = (β11, · · · , β1M), using a model-averaging technique, any generic parameter θ is estimated by the

posterior mean

E(θ|X) =
∑

i

E(θ|X, I = i) Pr(I = i|X) (11)

with posterior variance

V (θ|X) =
∑

i

V (θ|X, I = i) Pr(I = i|X)

+
∑

i

[E(θ|X, I = i)]2 Pr(I = i|X)−
[ ∑

i

E(θ|X, I = i) Pr(I = i|X)
]2

(12)

Thus our posterior variance estimates for the parameters of interest account for uncertainty in the

estimation of I . Our final point estimates are not byproducts of a single model with a fixed value of

I , but averaged over possible models with weights proportional to the posterior probabilities P (I|X).

3.3 Computational Details

1. Estimation of association parameters

None of the conditional distributions of the parameters has a standard distributional form and thus

generating observations from the posterior distributions or calculating the posterior estimates is not

automatic. We adopted a componentwise Metropolis-Hastings algorithm for each of the parameters.

Let η stand for a generic parameter, i.e., any of the β0i, β1m, ρiu, qi and plix (m = 1, 2;

i = 1, · · · , I; ∀ l, x). Let L(η|·) denote the full likelihood as given in (10) as a function of η

given the data and all the other parameters. Let π(η) be the prior distribution on η. In order to simu-

late observations from the full conditional distribution of η, namely π(η|·), we proceed as follows.
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Step 1: Start with any reasonable initial value of η, say η0. This is the current value of η.

Step 2: Generate a new value of η, say η∗, from a candidate density g(η).

Step 3: Replace η0 by η∗ with probability min
{
1, π(η∗|·)g(η0)

π(η0|·)g(η∗)

}
. Retain the existing value of η0 oth-

erwise. Note that π(η|·) ∝ π(η)L(η|·). If the candidate density π(η) = g(η), then the acceptance

probability reduces to (after cancelation of the prior term with the identical candidate density term)

min
{
1, L(η∗|·)

L(η0|·)

}
.

2. Inference of the number of subpopulations I

The following algorithm (Pritchard et al., 2000a) is used to sample from Pr(Z,P,Q). Starting with

initial values of Z(0), iterate the following steps for k = 1, 2, · · ·

Step 1. Sample P(k) and Q(k) from Pr(P,Q|X,Z(k−1));

Step 2. Sample Z(k) from Pr(Z|X,P(k),Q(k));

Step 3. Update α using Metropolis-Hastings step (where we consider a uniform(0,10) prior to α).

Step 2 may be performed by simulating z
(j,c)
l (population of origin of allele copy x

(j,c)
l ), independently

for each j, c and l from

Pr(z
(j,c)
l = i|X,P) =

q
(j)
i Pr(x

(j,c)
l |P, z

(j,c)
l = i)∑I

i′=1 q
(j)
i′ Pr(x

(j,c)
l |P, z

(j,c)
l = i′)

, (13)

where Pr(x
(j,c)
l |P, z

(j,c)
l = i) = p

ilx
(j,c)
l

.

4 Simulation

To illustrate our approach, we consider a scenario similar to the one in Satten et al. (2001) with an

admixture of European and American Indian ancestry in Argentinean population. Sala et al. (1998,

1999) published allele frequency data on twelve short tandem repeat (STR) loci in Argentineans of

European ancestry, as well as in three Argentinean American Indian aboriginal groups (Mapuche,

Tehuelche, and Wichi) (Table 1). The Metropolitan population of Buenos Aires was studied and the

population did not exhibit any significant difference from Hardy-Weinberg equilibrium. However, the

STR allele frequency distributions are characterized by significant differences within and also between
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different populations. We assume that Argentinean Europeans constituted 70% of a hypothetical target

population and that each American Indian group constituted 10%.

We simulate a population such that all eleven additional mutually independent STR loci are in

linkage equilibrium with the candidate gene for persons in the same subpopulation. Simulated data

sets are constructed by using reasonable true values of the parameters. Specifically, by using the

allele frequencies from Sala et al. (1999), we generate data on the candidate gene and other marker

loci in a population that comprises four subpopulations. As in Satten et al. (2001), we select allele

3 of locus D6S366 as the disease-causing allele, with frequencies 0.277, 0.341, 0.446 and 0.557 in

European, Mapuche, Tehuelche, and Wichi, respectively. Consider a biallelic candidate gene, i.e., a

candidate gene with two alleles A (the disease-causing allele) and a (the non-disease-causing allele).

The candidate gene G has 3 possible genotypes g0, g1 and g2 corresponding to persons having zero

(aa), one (Aa) and two (AA) copies of a disease-causing allele. If the frequency of the disease-causing

allele in the ith subpopulation is

ρi = Pr[Gc
l = A|Z = i] = 1− Pr[Gc

l = a|Z = i], (14)

then by Hardy-Weinberg equilibrium, the probabilities of the genotypes of G are as the follows:

Pr[G = g0|Z = i] = (1− ρi)
2;

Pr[G = g1|Z = i] = 2(1− ρi)ρi;

Pr[G = g2|Z = i] = ρ2
i . (15)

Finally, the disease status data that vary with changing frequencies of the disease-causing allele for

each subpopulation are generated. As stated in Satten et al.(2001), persons who were homozygous

for the disease-causing allele had an increased risk of disease corresponding to a log-odds ratio of

1.0 (relative risk = exp(1.0) = 2.72); and persons who were heterozygous for the disease-causing

allele had no increase in risk. This implies, in our notation, β11 = 0 and β12 = 1.0. The log

odds of the rare disease (which implies that the control population mimics the whole population, and
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Pr(G = gm|D = 0, Z = i) ≈ Pr(G = gm|Z = i)) among persons with zero or one copy of the

disease-causing allele was −5, −4, −3 and −3 in the European, Mapuche, Tehuelche, and Wichi

populations, respectively. For the common disease with a higher prevalence rate, we assume that the

log odds among persons with zero or one copy of the disease-causing allele was −2, −1.5, −1 and

−1 in the European, Mapuche, Tehuelche, and Wichi populations, respectively.

The results we presented are based on a set of diffuse and mutually independent priors. We use

N(0, 9) prior on β0i and β1m, Beta(0.5, 0.5) on ρi and a symmetric Dirichlet prior for the allele

frequency parameters with all λ’s being 0.5. For (q1, · · · , qI), we choose a Dirichlet(α, · · · , α) prior,

with a U(0,10) hyperprior on α.

For each scenario, we generated 100 different data sets and obtained the parameter estimates by

computing the model averaged posterior means for each simulated data set. In each replication of our

simulation, we generated data for 125 (250) cases and 125 (250) controls from the above simulation

strategy, followed by sampling the cases and controls from a larger random sample of subjects. For

each replication, we ran multiple Markov chains, typically with 20000 − 30000 iterations. The pos-

terior means calculated for each replication were based on every tenth observation of the last 5000

observations in each chain, combined together to reduce auto-correlation. An estimate of the posterior

variance was calculated based on the aggregate of the last 5000 values for each replication. We report

average values for these quantities over the 100 replications. We also calculated an estimate of the

mean squared error (MSE) corresponding to the estimates of each of our parameters of interest (say θ

in general) based on the 100 replications. We considered this MSE, i.e., the squared deviations of the

estimates from the true parameter, averaged over the 100 replications as a measure of performance of

our method.

MSE =
1

100

100∑
r=1

(Posterior mean of θ in r-th replication− True value of θ)2.

To examine the effect of the number of STR loci on the estimators, we analyzed the datasets with

250 subjects (125 cases and 125 controls ) by (i) using all the additional loci and (ii) only the first six
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additional loci. These two scenarios are labeled as X12 and X6 in Tables 2 and 4 respectively. By

applying the methods stated in Section 2 (Pritchard et al. 2000a) and introducing a uniform prior for

I (I ∈ {1, 2, 3, 4}), for each simulated dataset, first we obtain estimates of P (I|X). For example,

by (i), we obtain P (I = 3|X) = 0.2 and P (I = 4|X) = 0.8. Then the model averaged estimate

of I is 0.2× 3+ 0.8× 4=3.8. The estimates of the association parameters are computed following

(11) and (12). For the same dataset, the estimate of β12 is 1.09 for I = 3 and 1.02 for I = 4, thus

the final model averaged estimate of β12 for that dataset is 1.09 × 0.2 + 1.02 × 0.8 = 1.034. The

results in Table 2 are obtained by averaging these estimates over the 100 simulated datasets, which

shows that the posterior standard deviations of our model averaged estimates are typically smaller

than the standard errors furnished by Satten et al. (2001) (we include the relevant numbers from

Tables 2 and 3 of Satten et al. (2001) directly in Table 3 of the current paper). We realize that though

our simulation settings are the same as of Satten et al. (2001), the two sets of estimates may not

be exactly comparable as the two methods are not implemented on identical datasets, but still this

might serve as a precursor for comparison purposes. Satten et al. (2001) do not provide MSE for

their estimates over the replications. As a result we cannot compare the two procedures directly in

terms of the MSE. As one might expect, when we increased the sample size to 500 (250 cases and

250 controls), adequate performance is achieved even with just the first six STR loci and the overall

pattern of the results remain the same.

We also include the naive analysis completely ignoring additional multilocus information (denoted

as X0 in Tables 2). One can note that the estimation results are much inferior if one ignores the

genotypic information at a series of additional unlinked marker loci.

To show that our methods are not limited to the assumptions that either the disease is rare or the

genotypes G are binary, we also analyzed a simulated dataset with 250 subjects (125 cases and 125

controls) and another with 500 subjects (250 cases and 250 controls) where the disease has a higher

prevalence rate. The overall pattern of the results are fairly similar to the rare disease case. We note

relatively smaller MSE’s and posterior standard deviations for this common disease case as compared

to the rare disease case. The results are presented in Table 4.
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For analyzing the simulated data, we used the implicit prior belief that the source population may

have 4 or less subpopulations, by putting a discrete uniform prior on 1, 2, 3, 4 for I . However, we have

also tried to put non-zero probability on a value of I greater than the true simulation value of 4, for

instance, a discrete uniform prior on 1, · · · , 8. In this case, the estimates of the regression parameters

β1m appear to change very little even when I is estimated to be slightly greater than the true value

used to generate the data (results are not provided). Pritchard et al. (2004) note that for situations

where several values of I give similar estimates of log Pr(X|I), it is often the case that the smallest

of these is ‘correct’. In our practical implementation, we adopt a model selection perspective and try

to obtain the smallest value of I that captures the major structure in the data.

5 Application to a real dataset

To illustrate our method, we apply our approach to explore genetic association of obesity and the

β2AR candidate gene (for details of the study, please see Lin et al., 2005). The β-adrenergic receptors

(βAR) are known to play an important role in cardiovascular function and in response to drug. We

analyze complete case data on 144 men and women who participated in this study and ignore the

observations with missingness. Each of the participating subjects were genotyped for SNP markers

at codon 16 within the β2AR gene, at codon 389 within the β1AR gene and at codon 492 within the

α1A gene. The phenotypic information collected are weight and height of individuals, by which the

body mass index (BMI) of each subject can be calculated. We define ‘obese’, i.e, D = 1 when BMI

≥ 30.0, and D = 0 otherwise. This leads to 85 undiseased and 59 diseased subjects in the dataset we

consider.

Previous studies have detected possible association between polymorphism in the β2AR gene and

obesity, the focus being particularly on codon 16 and codon 27 substitutions, but no association has

been detected within β1AR gene or α1A gene (Johnson and Terra 2002, Lin et al. 2005, Takami et al.

1999). Therefore, we consider the β2AR gene as the candidate gene, denoted by G and the β1AR gene

and the α1A gene as two other genes unrelated with the disease, denoted by X = (X1, X2). Note that
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in this dataset, we only have the genotypic information regarding single polymorphisms in these three

genes which have biallelic genotypes, generally expressed as x = 0, 1, 2. So the expression in (4) will

be changed as P (X|Z = i) =
∏2

l=1 plix, where plix is the proportion of persons in subpopulation i

having genotype x (x = 0, 1, 2) corresponding to gene l.

We analyzed the data by considering genotypic information on all three genes (denoted by ‘X2+G’)

and by only the candidate gene (denoted by ‘X0+G’). Since in the real data, we do not know the

true value of I , we should try to estimate the smallest value of I that captures the major substruc-

ture in the data, if any. To this end, we introduce a discrete uniform prior on 1, 2, · · · , 15 for I .

We consider (pli1, pli2, · · · , pliI) ∼ Dirichlet(0.5, 0.5, · · · , 0.5), and for (q1, · · · , qI), we choose a

Dirichlet(α, · · · , α) prior with a uniform hyperprior on α with range from 0 to 10. By applying the

methods stated in Section 2, we first obtain inference on I . The principal findings are that with the

inclusion of the two other genes, we detect some evidence of substructure with an estimate of I , as

Î = 3, with P (I = 3|X) = 1, whereas without these two genes and by only using G, we obtain

P (I = 1|X) = 1, implying Î = 1, i.e., no population substructure can be detected in the source

population. In fact, the data came from a North American population with diverse ethnic composition

of blacks, whites and others, so one could expect some latent population substructure in this data. The

results of our analysis are presented in Table 5. In all the methods of analysis, the genetic factor does

not appear to be a statistically significant risk factor. Our results suggest that codon 16 (Arg16Gly)

polymorphisms of the β2AR gene is not a major contributing factor to obesity for this studied popu-

lation. In fact, in Swedish Caucasians, Gln27Glu polymorphism at codon 27 of the β2AR gene was

shown to be associated with obesity, but no such association was shown for Arg16Gly polymorphism

at codon 16. None of the Gln27Glu and Arg16Gly polymorphisms of the β2AR gene were found to

be a major contributing factor to obesity in Japanese men (Hayakawa et al. 2000). In the ordinary

logistic regression model, with G as a categorical factor, we also find insignificance of G, (P -values

0.8591 and 0.1571 corresponding to G=1 and 2 respectively). Even after accounting for information

in the other genes and population substructure, the effect of the candidate gene remains insignificant.

Notice that the Bayesian HPD intervals are wider than the ordinary logistic model due to addition of
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extra layer of uncertainty on I .

6 Discussion

In this article, we present an alternative Bayesian model for accounting for population substructure in

genetic association studies. As compared to previous approaches, our model is advantageous in terms

of the following aspects. First, it can estimate the number of subpopulations (I) that comprise the

overall population. Although Satten et al. (2001) can also provide such an estimate, their approach

is based on the grid procedure in which multiple different I’s are fitted and the optimal one is then

determined in terms of the minimum AIC. On the other hand, Pritchard et al. (2000b) estimated sub-

structure and then conducted tests based on the imputed substructure. Based on marker and candidate

gene information, our model estimates the posterior probabilities of I , which is then used in forming

the final estimates of the relative risk parameters through model averaging. An additional advantage

is that, unlike Satten et al.’s (2001) approach, our model does not rely on the assumption of the rare

disease or the collapsing of multiple genotypes into binary genotypes, thus offers more power to study

the genetic architecture of any type of diseases.

A new feature of our Bayesian analysis is the use of model averaging to estimate the regression

coefficients. Rather than relying on one particular model with a fixed number of strata I , we have put a

prior on I , and have estimated the regression parameters as the weighted average of their estimates for

different values of I . The weights are proportional to the posterior probabilities of the different values

of I . Thus we embed the substructure estimation together with inference on the association parameters

in a unified Bayesian framework. The standard error of the relative risk estimates does incorporate

the uncertainty in the estimation of I as reflected in (14). This is unlike the method proposed in

Pritchard et al. (2000b) where the substructure is estimated first and tests are conducted based on the

imputed substructure. Table 2 shows that our methods are comparable to those of Satten et al. (2001);

however, since our set-up is different from that of Pritchard et al. (2000b), it is hard to compare the

two methods directly in numerical sense. In principle, we do believe that combining inferences of the
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substructure and association modeling will lend one more power in detecting association.

It should be pointed out that fewer additional markers are needed when the sample size is large.

When additional marker loci are involved, the number of nuisance parameters (the allele frequencies

of those loci for each subpopulation) in the model would increase, requiring more data to estimate

them properly.

There remains the problem of handling marker loci in linkage disequilibrium with the candidate

gene in our framework. According to Falush et al. (2003), there are three sources of linkage disequi-

libria (LD), mixture LD, admixture LD and background LD. The mixture LD arises from variation

in individuals’ ancestry and it can be measured by unlinked markers. The admixture LD occurs be-

cause of the correlation in ancestry among an extended genomic region. The background LD decays

on a short scale and, therefore, occurs within a fine chromosomal structure. Pritchard et al. (2000a)

modeled the mixture LD for association studies. In their “linkage” model, Falush et al. (2003) in-

corporated the “admixture LD” into the inference of population structure. The incorporation of the

background LD is an interesting open question.

In summary, we have derived flexible Bayesian estimation techniques for disease-gene associ-

ation in case-control studies by accounting for population structure. First, we applied Pritchard et

al.’s (2000a) methods to infer population structure (i.e. estimating P (I|X) and I) by using the geno-

types of sampled individuals at a series of unlinked markers. Second, we propose a latent variable

approach to estimate the association parameters, and account for population substructure using addi-

tional marker loci information as in Satten et al. (2001). The final results are calculated by the model

averaging technique (as described in (11) and (12)) which combine inferences from the above two

steps. Estimation results based on a simulated admixed population (mimicking the results presented

in Sala et al. (1998)) show that the estimates of the relative risk parameters using additional mutilocus

genetic information are superior to those when such information is not exploited. We also apply our

method to a real dataset on obesity. The paper illustrates how the modeling tool of Bayesian model

averaging can be effectively used to conduct posterior inference in an interesting application in human

genetics.
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APPENDIX A

Estimation of P (X|I): An explanation to the approximation in equation (9)

From equation (7), by the strong law of large numbers,

1

P (X|I)

a.s.→ E
( 1

Y

)
,

where Y = P (X|Z,P,Q). This implies that,

−2 log P (X|I)
a.s.→ 2 log E

( 1

Y

)
, (A.1)

Let W = −2 log Y =[DV |X], then

E
( 1

Y

)
= EY (exp(− log Y )) = MW (

1

2
), (A.2)

where MW (t) denotes the moment generating function of the distribution of W . By assuming that the
deviance function [DV |X] is normal, i.e., W ∼ N(µ, σ2), by (A.2), we have,

E
( 1

Y

)
= exp

(
µ/2 + σ2/8

)
.

Hence by (A.1), and the fact that µ̂ and σ̂2 are consistent estimates of µ and σ2, we have the approxi-
mation in (9).

Remark: Suppose we assume instead of normality of the deviance function, that [DV |X]=W =

−2 log Y ∼ Gamma(µ2/σ2, σ2/µ), where µ and σ2 are the mean and variance of W , and Gamma(a,b)
denotes a Gamma distribution with shape parameter a and scale parameter b. Then by following steps
exactly similar as above, one will obtain an analogue of (9) under the Gamma distributional assump-
tion as,

−2 log P (X|I) ≈ −2µ̂2/σ̂2 log
(
1− σ̂2

2µ̂

)
, for

σ̂2

µ̂
< 2.

APPENDIX B
The full conditional distributions of the parameters

Following the notations in Section 2, note that for subject j, Gj takes one of the values gm,
m = 0, 1, · · · , M and π(θ|·) ∝ π(θ)L(θ|·). Therefore, the full conditional distributions for all the
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parameters are given by :

π (β0i|·) ∝ exp
{
− (β0i − µβ0i

)2

2σ2
β0i

}
×

{ N∏
j=1

I∑
i=1

[
qi ×

L∏
l=1

2∏
c=1

plixc
l
× Pr(Gj = gm|Z = i)︸ ︷︷ ︸

functions ofρiufrom (5)

×exp{Dj × (β0i + β1m}
1 + exp{β0i + β1m}

]}
π (β1m|·) ∝ exp

{
− (β1m − µβ1m)2

2σ2
β1m

}
×

{ N∏
j=1

I∑
i=1

[
qi ×

L∏
l=1

2∏
c=1

plixc
l
× Pr(Gj = gm|Z = i)︸ ︷︷ ︸

functions ofρiufrom (5)

×exp{Dj × (β0i + β1k)}
1 + exp{β0i + β1k}

]}
π (q1, · · · , qI |·) ∝

{ I∏
i=1

q
(α−1)
i

}
×

{ N∏
j=1

I∑
i=1

[
qi ×

L∏
l=1

2∏
c=1

plixc
l
× Pr(Gj = gm|Z = i)︸ ︷︷ ︸

functions ofρiufrom (5)

×exp{Dj × (β0i + β1m)}
1 + exp{β0i + β1m}

]}
π (ρi|·) ∝

{
ρ

(a−1)
i × (1− ρi)

(b−1)
}
×

{ N∏
j=1

I∑
i=1

[
qi ×

L∏
l=1

2∏
c=1

plixc
l
× Pr(Gj = gm|Z = i)︸ ︷︷ ︸

functions ofρiufrom (5)

×exp{Dj × (β0i + β1m)}
1 + exp{β0i + β1m}

]}
π (pli1, · · · , plix, · · · , pliXl

|·) ∝
{ Xl∏

x=1

p
(λplix−1)
lix

}
×

{ N∏
j=1

I∑
i=1

[
qi ×

L∏
l=1

2∏
c=1

plixc
l

×Pr(Gj = gm|Z = i)︸ ︷︷ ︸
functions ofρiufrom (5)

×exp{Dj × (β0i + β1m)}
1 + exp{β0i + β1m}

]}
.
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Table 1: Allele frequencies for Twelve STR loci in the four Argentinean subpopulations, cited from
Sala et al. (1998) and Satten et al. (2001).

Locus Argentinian Europeans Mapuche Tehuelche Wichi
D6S366 0.082 0.091 0.143 0

0.204 0.114 0.071 0
0.277 0.341 0.446 0.557
0.119 0.136 0.036 0.086
0.091 0.125 0.036 0.029
0.183 0.159 0.143 0.200
0.028 0.011 0.018 0.071
0.015 0.023 0.107 0.057

FABP 0.589 0.683 0.732 0.485
0.110 0.058 0.107 0.162
0.300 0.260 0.161 0.353

CSF1PO 0.330 0.266 0.339 0.226
0.313 0.282 0.232 0.194
0.298 0.367 0.411 0.581
0.059 0.085 0.018 0

F13A 0.151 0.222 0.357 0.173
0.060 0.122 0.125 0.077
0.202 0.122 0.054 0.346
0.209 0.178 0.143 0.115
0.325 0.344 0.304 0.288
0.053 0.011 0.017 0

FESFPS 0.260 0.170 0.143 0.257
0.420 0.500 0.714 0.543
0.247 0.284 0.107 0.043
0.073 0.045 0.036 0.157

THO1 0.233 0.526 0.286 0.132
0.250 0.298 0.429 0.721
0.105 0.009 0.018 0
0.185 0.026 0.089 0.015
0.226 0.140 0.179 0.132

HPRTB 0.032 0 0 0
0.179 0.032 0.091 0
0.317 0.323 0.227 0.357
0.285 0.403 0.591 0.167
0.137 0.242 0.091 0.357
0.050 0 0 0.119

VWA 0.063 0.0096 0.036 0.014
0.099 0.077 0.054 0.014
0.294 0.577 0.429 0.514
0.297 0.125 0.214 0.343
0.246 0.212 0.268 0.114

D13S317 0.090 0.020 0 0
0.160 0.240 0.15 0.464
0.060 0.070 0.05 0.179
0.290 0.120 0.15 0.089
0.250 0.260 0.3 0.089
0.100 0.180 0.225 0.179
0.040 0.110 0.125 0

D7S820 0.156 0.070 0.050 0
0.115 0.050 0.050 0.070
0.276 0.220 0.175 0.125
0.245 0.420 0.525 0.450
0.159 0.210 0.200 0.250
0.046 0.030 0 0.105

D16S539 0.156 0.110 0.225 0.125
0.100 0.130 0.075 0.232
0.294 0.240 0.100 0.321
0.252 0.370 0.550 0.250
0.195 0.150 0.050 0.071

RENA4 0.772 0.728 0.881 0.690
0.074 0.229 0.023 0
0.153 0.041 0.095 0.310
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Table 2: The results of simulated rare-disease data with marker loci in linkage equilibrium with the
candidate gene D6S366. Ratio of the sample sizes of cases to controls is 125/125 and 250/250. X12
and X6, represent that the parameters were estimated by using the twelve and the first six additional
marker loci, respectively. X0 is the analysis without using any additional marker loci. Here Mean
and posterior standard deviation refers to the average of the Bayes estimates and posterior standard
deviations obtained in 100 replications, whereas MSE is the estimated mean squared error based on
100 replications.

Sample size Model β11 β12 I
True value 0.0000 1.0000 4

125/125 X12 Mean -0.0475 1.1093 3.8178
MSE 0.1497 0.0765 0.1802

Post. std. dev. 0.3126 0.2638 0.3854
X6 Mean -0.1095 1.1028 3.6403

MSE 0.2005 0.0986 0.3540
Post. std. dev. 0.3277 0.3127 0.4763

X0 Mean -0.3380 0.8855 4.0000
MSE 1.2277 0.4982

Post. std. dev. 1.5982 1.0677

250/250 X12 Mean 0.0005 1.0966 3.7873
MSE 0.0546 0.0551 0.2107

Post. std. dev. 0.2704 0.1592 0.4089
X6 Mean 0.0051 1.1035 3.5415

MSE 0.0631 0.0582 0.4572
Post. std. dev. 0.3127 0.1952 0.4994

X0 Mean -0.2766 0.9489 4.0000
MSE 1.2603 0.4330

Post. std. dev. 1.4152 0.9236
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Table 3: The results of simulated rare-disease data with marker loci in linkage equilibrium with the
candidate gene D6S366 which are analyzed by Satten et al. (2001). 125/125 and 250/250 denote ratio
of the sample sizes of cases to controls. X12 and X6 represent that the parameters were estimated by
using the twelve and the first six of the additional marker loci, respectively. Here Mean and standard
error refers to the average of the estimates and standard errors obtained in 500 replications.

Sample Size Model β11 β12 I
True value 0.000 1.000 4

125/125 X12 Mean 0.061 1.006 3.53
Std. err. 0.293 0.453 0.76

X6 Mean 0.023 0.883 3.32
Std. err. 0.865 1.718 0.69

Crude Analysis* Mean 0.366 1.760 1.00
Std. err. 0.285 0.370

250/250 X6 Mean 0.023 0.962 3.37
Std. err. 0.226 0.394 0.61

* Ignore stratification and analyze data without additional marker loci.
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Table 4: The results of simulated common-disease data with marker loci in linkage equilibrium with
the candidate gene D6S366. Ratio of the sample sizes of cases to controls is 125/125 and 250/250.
X12 and X6, represent that the parameters were estimated by using the twelve and the first six ad-
ditional marker loci, respectively. X0 is the analysis without using any additional marker loci. Here
Mean and posterior standard deviation refers to the average of the Bayes estimates and posterior stan-
dard deviations obtained in 100 replications, whereas MSE is the estimated mean squared error based
on 100 replications.

Sample size Model β11 β12 I
True value 0.0000 1.0000 4

125/125 X12 Mean -0.0062 1.1116 3.8492
MSE 0.1106 0.1005 0.1456

Post. std. dev. 0.3152 0.1607 0.3523
X6 Mean 0.0017 1.1299 3.6279

MSE 0.1173 0.1371 0.3634
Post. std. dev. 0.3488 0.2766 0.4766

250/250 X12 Mean 0.0023 1.0928 3.9331
MSE 0.0600 0.0551 0.0461

Post. std. dev. 0.2165 0.1806 0.2412
X6 Mean 0.0191 1.1051 3.6228

MSE 0.0408 0.0470 0.3748
Post. std. dev. 0.2627 0.1991 0.4846
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Table 5: The results of real data analysis with the posterior mean (Estimate), posterior standard de-
viation and 95% highest posterior density (HPD) interval (MLE and confidence interval (CI) for the
ordinary logistic regression model).

Model β11 β12 I
X2+G Estimate -0.0895 0.7165 3

Post std.dev. 0.3997 0.5201 ·∗
HPD (-0.8619,0.6831) (-0.2996,1.7259)

X0+G Estimate -0.1206 0.7433 1
Post std.dev. 0.4515 0.5602 ·∗

HPD (-1.0028,0.7865) (-0.3339,1.8303)

Ordinary logistic regression Estimate -0.0668 0.7143
with only G as covariate Std.err. 0.3765 0.5048

CI (-0.8047,0.6711) (-0.2751,1.7037)

∗:All of the posterior probability concentrated on a single value of I , thus we are unable to obtain estimates
of posterior variance.
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