A model for space-time threshold exceedances 1

Supplementary material for
“A model for space-time threshold exceedances with

an application to extreme rainfall”

1 Proof of results on spatial dependence

Let Z; be the space-time process defined by equation (2.1) with innovations given by
equation (2.3). Let also e be a stationary random field on S with F.(z) = Pr(e(s) <

x), satisfying the asymptotic dependence condition

lim Pr(F.(e(s2)) > p,..., Fe(e(sq)) > p|Fe(e(sy)) >p) >0 (S.1)

p—1—
We need to prove that with these specifications Z; is also asymptotically dependent

in space, 1.e.

lim Pr(®(Zi(s2)) > p,..., ®(Zi(sq)) > pl® (Zi(s1)) > p) > 0 (5:2)

p—1—
forall ¢, all s1,...,sq4, and all d = 2,3, ..., where ® is the CDF of a standard Gaussian

random variable,
Note that (S.2) is equivalent to

lim Pr(Z,(s2) > u, ..., Zi(sq) > p|Zi(s1) > u) >0

uU— 00

We have

Pr(Zi(s2) > u, ..., Zi(sq) > u|Zi(s1) > u) =

/]R e /]RPr(Zt(sQ) > Uy .oy Zi(Sq) > ulZi(s1) > uy Zi—1(81) = 21, -« -, Z1—1(Sq) = 2q)-

'f51 77777 Sd(zl, ey zd)dzl e dzd (83)
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where fs,  s,(21,...,2q) is the joint density of (Z;(s1),..., Zi(sq)) having N(0,1)

univariate margins. The integral in (S.3) is equivalent to

/]R‘ . /IRPr(st(sQ) >u—@za,...,6¢(8q) > u— azqle(s1) > u—az)

f31 ..... sd(zl,...,zd)dzl...dzd:

/ /Pr<5*(s)>“_a22 £ (s0) > “_azd|s*(s)>“_o‘zl)
RO/R O\ VI Y T A Y T T

'f51 ..... Sd(zl,...,zd)dzl...dzd:

/ / Pr <52‘(32)>u*+ < (21 — 22),...,61(8q) > u™ + < (zl—zd)|€z‘(31)>u*>.
R R V 1-— CYQ v1-— aQ
'f51 ..... sd(zly ceey Zd)le s dZd (84)
where €7 (s) = g/(s)/vV1 —a? ~ N(0,1) and v* = (u — az)/v1 — a?. The limit as
u — oo of (S.3) is equivalent to the limit as u* — oo of (S.4). The integrand in (S.4)

is bounded above by fs, s, (21,...,24) which is integrable. Hence, by the dominated

convergence theorem we can take the limit as u* — oo inside the integral, i.e.

lim Pr(Zi(s2) > u, ..., Zi(sq) > ulZ¢(s1) > u) =

U—00

/ / 1_;CO <5 ) > u = ( ) g¢(sa) > u' + ——=(21 — za)e{ (sa) > *)
1m Ir S u + z 29 )y ey S u z z S u .
u t 52 1 3 1 2 t\od 1 1 d)|1ct\9d

2
Fstsg(Z15e 0y 2a)dz1 ... dzg (S.5)
For ks, ..., kg > 0, we have
uhinoo Pr(ef(s2) > u" — ko, ..., 1(sq) > u" — kgle;(s1) >u*) > ¢ >0
which follows from
limy 00 Pr(ef(se) > u*, ... 5 (sq) > u*|er(s1) > u*) =

= limys 00 Pr(Fe(e(sa)) > @(u*), ..., Fe(e(sq)) > ®(u*)|F.(e(s1)) > P(u*)) =

= lim, ,1- Pr(Fe(e(s2)) > p, ..., Fe(e(sa)) > p|Fe(e(s1)) >p) =c >0
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where the final inequality holds by property (S.1).

The integral (S.5) can be decomposed as follows

oo o0 Q
= lim Pr (el >ut+ ——(21 — 29), ...,
/]R /xl /xd u*gﬂoo r< 1(52) > u T-o? (21 — 22)

* * a * *
&y (Sd) >u + ﬁ(zl —Zd)|€t(81) > U ) fsl ..... Sd(Zl,...,Zd)dZQ...ddeZ1+
(S.6)

x1 Tq «
lim Pr(e/(s2) >u" + ———=(21 — 29), ...,
oo [P (s> e =
!

er(sq) > u* + (z1 — za)|g; (s1) > u*> Forsa(Z1s o, za)dza .. dzgdzy >

N

—
/ /oo.../oo lim Pr(e,’;(sg)>u*+L(zl_zQ),...,
RJay  Joy v V1-a?

[0

er(sq) > u* + (21 — za)lef (s1) > u*) Torisa(Z1s oy za)dze . .. dzgdz

VvV1—a2

Consider the case a > 0. Then, by the arguments above,

//oo /OO lim Pr(s*(s)>u*—|— < (21 — 22)
L R A Vi—az 1

« * *
er(sq) > u* + m(zl —zq)ler(s1) > u > Joirsa(Z1so o, za)dza .. dzqdzy >
(o] o0
/IR/ o C forrsg(Z1, .oy 2a)d2a . . dzgdzy = ¢-Pr(Zy(s1) < min(Z(sa), ..., Zi(sq)))
T Tq

By the stationarity of Z;(s), we have Pr (Z;(s1) < min(Z;(s2),. .., Z(sq4))) > 0, from
which the result follows. The case v < 0 can be dealt with in a similar manner by

focussing on the region (—oo,z;) in the inner integral of (S.6).

We now need to prove that the space-time process Z; in (2.1) with innovations given

by (2.3) has asymptotically independent non-simultaneous exceedances, that is

lim Pr(® (Zy,(s2) > ps ... ® (Zy,(sa)) > p|® (Z,(51)) > p) = 0

p—1—
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forall d > 1, all s1,...,s; and all 1, ..., t4, with at least one time different from the

others. This is equivalent to proving that

lim Pr(Z,(s2) > u, ..., Z,(sq) > u|Zy,(s1) > u) =0

U— 00

The statement is true if s; = ... = s4 by the asymptotic independence properties
of a first-order Gaussian autoregressive process. Therefore, we will assume that at

least one of the sites is different from the others and without loss of generality take

So # $1. Then,
Pr(Z,(s2) > u, ..., Zy,(sa) > ulZy, (s1) > u) < Pr(Z,(s2) > u|Z(s1) > u)

Hence, if we show that Pr(Z;,(s2) > u|Z;,(s1) > u) — 0 as u — 0o, the result follows.

As Zi(s) ~ N(0,1) for any s € S and any t € Z, we have

Pr(Zi,(s2) > u, Zy,(s1) > ulZ, So) =2a,4, S1) =
(Zt2(52)>u|Ztl Sl >u / / t2 2 t1( 1) 1_|q)t(2 )1( 2) t1— 1( 1) y)

.th2—1(82)7Zt1—1(81) (1‘, y)dxdy =

thQ—l,Ztl—l (.T, y)dlﬂdy =

//Prgt2 S3) > U — ax, e (S1) > u— ay)
1 — ®(u)

/ / . w?)) <1 - (%» I 21y 1(2).20, -1(s1) (T, y)dxdy (S.7)

1—®(u)
where fz, i (s5).2,, _1(s1)(%, y) denotes the joint density of (Z,-1(s2), Zi,—1(s1)). From
the Mills ratio approximation, 1 — ®(z) ~ ¢(z)/z for large z. Therefore, for large u,

(- () (-0 ()

1 —®o(u)

1

~ exp {—m (W*(1 4 o) — 20u(z + y) + *(2° + 7)) }-O(u‘l) — 0 as u — 00
-«

As the integrand in (S.7) is bounded above by the integrable function fz, _,(s,).2,, _1(s1)»

we can take the limit as u — oo inside the integral and the result follows.
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2 Simulation study on the Indirect Inference Algo-

rithm

To assess the performance of the Indirect Inference Algorithm (ITA), a simulation
study was carried out, assuming equation (2.1) as the data-generating process and
using Model 1 of Section 4 as the auxiliary model. Two different scenarios were
considered, which, in the notation of Section 4, correspond to Model 1 with @ = 0.35,
Y1 = 8000 and 1, = 0.40 and Model 4 with a = 0.35, ¥; = 350 and 5 = 0.40.
Model 1 allows a comparison between the direct estimator of § = («, 11, 1)2) obtained
by maximizing PLY and the indirect estimator derived from ITA. It also provides the
most favourable setting for ITA as the auxiliary model coincides with the target one.
By contrast, Model 4 is structurally the furtherest away from the auxiliary model
among the four formulations of Section 4 and no direct estimator of € is available.
For each scenario, reproducing the locations of the North Brabant rainfall stations,
a space-time dataset over 30 sites and with 4000 time points was simulated. The
simulation was repeated 100 times in order to reconstruct the estimators’ sampling
distribution. For ITA, we set M = 10. Table S.1 summarizes the simulation results,
reporting the estimators’ bias and root mean squared error divided by the true value
of the parameters to ease comparisons across models. For Model 1, when moving from
the direct to the indirect estimator, we observe an increase in bias, but a limited loss
in the overall efficiency measured by the relative root mean square error. For Model
4, the comparison with the direct estimator is unavailable, nonetheless, the summary
quantities suggest a good performance of the indirect estimator for the parameter «

and 1, and a slight worsening of the accuracy and precision of the estimator of 5.

5
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Target model - estimator Bias@a) Bias@) Bias@y) RMEE(a) RMSE@) RMSE@,)

a 1 2 1 P2
Model 1 - direct estimator | 0.0012  -0.011 0.0042 0.090 0.15 0.024
Model 1 - indirect estimator | 0.020 0.050  -0.0082 0.098 0.21 0.031
Model 4 - indirect estimator | -0.0049  0.068 -0.029 0.092 0.14 0.049

Table S.1: For Model 1 and Model 4, relative bias and root mean square error of the
estimators of a;,1; and 5. For Model 1 summaries for both the direct and indirect

estimators are reported.

3 Analysis of the North Brabant data

To explore anisotropy at extreme levels for the North Brabant data of Section 4,
we computed empirical estimates of x(p) in (1.1) for p = 0.90 for pairs of sites at
increasing distances along four directions corresponding to the angles 0, /4, 7/2 and
3m/4. For each of the time lags 0,1 and 2, smoothed estimates and 95% pointwise
confidence bands are shown in Figure S.1. No significant differences are detected

across directions for any of the time lags considered.

Figure S.2 shows smoothed empirical estimates of x(p;{, ||h||) as defined in (4.4) for
[ = 2, as a function of ||h| and p € {0.90,0.95,0.99,0.995}. Also shown are the
corresponding model-based estimates from Models 1, 2, 4 and SW. All formulations

perform well.
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Figure S.1: Smoothed empirical estimates of x(p) for p = 0.90, and associated ap-
proximate 95% pointwise confidence bands computed from pairs of sites at increasing
distances (displayed on the z-axis) along four directions: angles 0, 7/4, /2 and 37 /4.
Pairs of sites are studied, on the same day in (a), with a one-day lag in (b), and with

a two-day lag in (c), respectively.
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Figure S.2:  Estimates of x(p;2,||h|]) as a function of |h], for p €

{0.90,0.95,0.99,0.995}. In each plot, the dashed line corresponds to smoothed em-
pirical estimates. In (a) the continuous line corresponds to Model 1 estimates, in (b)
to Model 2 estimates, in (c¢) to Model 4 estimates and in (d) to SW model estimates,

respectively.



