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1 Revenue Management Literature Review

Airlines’ revenue management systems handle thousands of transactions per second,

and sell decisions are due in milliseconds, so that no current revenue management

system works in real time. Therefore, accurate estimates of demand and price elas-

ticity are essential to precompute control values to maximise revenue from of its seat

inventory (McGill and Van Ryzin, 1999). Early examples of price elasticity estimation

include Jung and Fujii (1979), Oum et al. (1992), Brons et al. (2002), and Kremers

et al. (2002), while Granados et al. (2012) study differences in price elasticities for

flights due to distribution channel using a log-linear model. In the revenue man-

agement literature, multinomial discrete choice models of customer selection between

available booking classes, cabin classes and/or flights times are popular; for examples,

see Vulcano et al. (2010), Vulcano et al. (2012), and Dai et al. (2014). In contrast, we

do not model individual customer choice, but model daily booking counts for a given

flight and cabin class. Any remaining dependence in these counts due to customer

choice between different flights departing on the same day is instead captured by the

copula model. A number of authors also combine nonhomogeneous Poisson processes

for the arrival of potential customers, with product choice models (Balaiyan et al.,

2019). A ‘no-buy’ option is included in the choice set to accommodate potential cus-

tomers who do not buy a ticket; see Vulcano et al. (2012), Besbes and Zeevi (2015),

and Van Ryzin and Vulcano (2014). However, our model differs from this because

we model the realized booking process — i.e. the bookings that are actually made

— rather than the arrival of potential customers, including those who do not make a

booking.
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Lo et al. (2015) and Li et al. (2014) also stress the importance of accounting for price

endogeniety in models of demand in the airline industry, as do Mumbower et al. (2014)

and Lurkin et al. (2017) who also make use of instrumental variables. Similarly, a

number of other authors have also considered latent segmentation of customers when

estimating demand and/or price elasticity using choice and other models; for example,

see Teichert et al. (2008), Wen and Lai (2010), Martinez-Garcia and Royo-Vela (2010),

Vij and Walker (2014), and Feldman and Topaloglu (2015). However, our study is

the first of which we are aware that identifies such a rich latent segmentation of

airline passenger bookings using a mixture-of-experts style model calibrated with a

large disaggregate dataset. A similar modelling approach to our mixture-of-expert

model is Li et al. (2014). The authors analyze strategic behaviour by a mixture of

myopic and strategic customers, a special case of our model with two latent segments

and no differentiation between the arrival time of strategic customers. Reviewing

the statistical literature for two fundamental techniques accounting for unobserved

heterogeneity, Sfeir et al. (2021) compare latent class with mixed logit models. Besides

the advantages of latent class models, having fewer assumptions about the mixture

distribution, being interpretable (as their mixture component typically depends on

covariates — in our case, time to departure, departure time, and booking day of the

week), and the correlation between the mixture component and the segment-specific

variables and estimated elasticities are implicit in the model (mixed logit models need

to assume a joint distribution for both components), the author mentions that latent

class models may oversimplify the unobserved heterogeneity if the number of classes is

small. To ensure that our model does not oversimplify the unobserved heterogeneity,

up to 7 passenger segments are analyzed for each departure day.

Last, Wen and Chen (2017) account for the impact of the days to departure at booking
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on demand as a smooth nonlinear function, whereas Lurkin et al. (2017) do so for

the flight departure time. Both papers employ parametric function bases constructed

from low order Fourier terms. In contrast, following the statistical literature (Wood,

2017), we model both nonlinear effects using splines. These are more flexible and

allow for data-driven levels of smoothing. Moreover, these two nonlinear effects are

estimated for both the booking intensity and the mixture probabilities in the MNL.

Within Table A.1, we summarizes the main features (sample size of data, usage of

covariates, model-type, handling of endogeneity (Endo.), and usage of segmentation

(Seg.)) of prior studies of passenger flight retail demand and price elasticity that are

closest to ours.

Table A.1: Comparison of relevant prior literature on modelling retail demand for passenger flights

Author Data Covariates Model Endo. Seg.

Dai et al.

(2014)

Booking, ticketing,

and availability

data from 3

airlines between

2011 and 2012

(n = 748,076).

[1] Ticket price,

[2] Departure Time,

[3] Ticket change fee,

[4] Milage gain,

[5] Carrier,

[6] Booking Time,

[7] Booking Channel

MNL,

Nested Logit,

Mixed Logit

no no



6 Jan Felix Meyer et al.

Mumbower

et al.

(2014)

JetBlue Webbot

data for

transcontinental

flights between 2

and 22 September

2010 over a 28-day

booking horizon

(n = 7,522).

[1] Ticket price,

[2] Departure day of week,

[3] Departure Time,

[4] Days to departure at

booking,

[5] Booking day of week,

[6] Virgin America

promotions,

[7] Labor Day indicator

Ordinary Least

Squares,

Two Staged

Least Squares

yes no

Fiig et al.

(2014)

Bookings at 22

selected traffic

flows from

Scandinavian

Airlines

(n = 7,780).

[1] Ticket price,

[2] Departure day of week,

[3] Departure Time,

[4] Days to departure at

booking,

[5] Recurring special periods,

[6] Departure Date

Nonlinear

regression

(multiplicative)

no no

Vulcano

et al.

(2012)

Booking data from

last 7 selling days

for 11 Monday

flights from

January to March

of 2004.

[1] 11 Products (fare-classes)

with different fare-values,

[2] 7 Booking Periods (each

24 hours),

[3] 2 daily flights,

[4] Market share

MNL no no
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Teichert

et al.

(2008)

Stated preference

survey data from

frequent flyer

passengers

traveling on 11

European

short-haul routes

(n = 5,829).

[1] Product characteristics:

compartment (business,

economy),

[2] Stated preferences:

scheduled frequency, price,

fare flexibility, punctuality,

catering, ground service,

[3] Behavioral and

socio-demographic variables:

gender, age, education level,

profession, flying frequency

Latent Class no yes

Lurkin

et al.

(2017)

Ticket data

purchased through

travel agencies

worldwide as

collected by the

Airlines Reporting

Corporation

(ARC)

(n = 10, 034, 935).

[1] Itinerary Information

(Departure Time, Travel

Time, Equipment, Number

of connections, Direct Flight

Indicator),

[2] Price (Average high yield

fare, Average low yield fare),

[3] Marketing relationships

(Codeshare, Interline,

Online),

[4] Carrier preference

MNL yes no

Present

Study

Retail bookings

and flight data up

to 120 days to

departure

(n = 1,333,712).

[1] Ticket price,

[2] Departure day of week,

[3] Departure Time,

[4] Days to departure at

booking,

[5] Booking day of week

our model yes yes
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2 Price Model

The initial step in our estimation is the construction of the residual ξ̂ to accom-

modate the missing exogeneity of price. Table A.3 provides estimates of the linear

Component Estimate (θ̂j) Std. Error % Change

Intercept 4.6204 0.0014 –

log(IV) 0.1052 0.0003 11.09%

BDAY = Mon -0.0148 0.0017 -1.47%

BDAY = Tue -0.0170 0.0017 -1.69%

BDAY = Wed -0.0141 0.0017 -1.40%

BDAY = Thr -0.0127 0.0017 -1.26%

BDAY = Fri -0.0054 0.0017 -0.54%

BDAY = Sat 0.0045 0.0019 0.45%

Table A.3: Linear parameter estimates for the model for PRICE at Eqn. (3.7) fitted to bookings

departing on Thursday. The point estimate and the standard error are reported, along with the

effect on PRICE of increasing each covariate by 1 unit, which is given by exp(θ̂j)− 1.

coefficients θ0, . . . θ7 of model 3.7 and their impact on PRICE. The baseline for the

BDAY dummy variable is Sunday, and the remaining weekday dummy variables have

significant relationships with PRICE. There is a slight discount for tickets booked on

weekdays of between 0.63% and 1.84%, compared to those booked on the weekends.

The instrumental variable IV has a significant positive coefficient, with a z-value

of 0.1052/0.0003 = 350.7 for the null hypothesis that θ1 = 0; suggesting that the

logarithm of bid-price is a strong instrument.

Figure A.1 plots the estimates of the smooth functions f0 and f1, along with 99%
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confidence bands, constructed as in Marra and Wood (2012). The estimate of f0

shows that ticket prices tend to increase closer to departure. Turning to the estimate

of f1, it can be seen that ticket prices tend to peak for flights departing at around

08:00 and 18:00. These are the morning and evening peak demand periods, and this

increase is consistent with the demand profile for flights on a busy short-haul route.

3 Demand Model with Two Segments

Table A.4 gives the estimates of the linear coefficients, both excluding (Model I) and

including (Model II) the residuals ξ̂ from the price model. That is Model I ignores

the missing exogeneity of price while Model II takes this into account through the

above instrumental variable approach. We find a significant coefficients of ξ̂, with z-
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Figure A.1: Estimates of f0 (left panel) and f1 (right panel) from fitting the price model at Eqn. (3.7)

to bookings on flights that depart on Thursday. The dashed lines are 99% confidence bands, which

are tight.
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Segment BL k = 1 k = 2

Model Component λBL(t) πk(t)

I

Segment Adjustment Coefficients

PRICE -0.0009 (0.0002) -0.0336 (0.0019)

Baseline Coefficients Log-odds Coefficients

Intercept -1.1213 (0.0886) -3.8781 (0.1450) –

BDAY = Mon 0.7753 (0.0743) 3.9991 (0.1437) –

BDAY = Tue 0.9768 (0.0760) 3.9786 (0.1540) –

BDAY = Wed 1.2515 (0.0806) 3.4608 (0.1395) –

BDAY = Thr 1.0012 (0.0877) 3.9168 (0.1482) –

BDAY = Fri 0.6714 (0.0848) 4.3488 (0.1605) –

BDAY = Sat -0.3964 (0.0558) 0.3479 (0.1175) –

II

Segment Adjustment Coefficients

PRICE 0.0008 (0.0005) -0.0641 (0.0104)

ξ̂ -0.0032 (0.0004) 0.0045 (0.0039)

Baseline Coefficients Log-odds Coefficients

Intercept -0.9589 (0.5145) -1.5856 (1.1263) –

BDAY = Mon 1.1680 (0.3021) 2.5242 (0.4329) –

BDAY = Tue 1.1535 (0.3879) 2.6881 (0.6621) –

BDAY = Wed 1.0423 (0.3924) 3.2702 (0.5823) –

BDAY = Thr 1.0721 (0.3397) 2.5534 (0.4931) –

BDAY = Fri 0.9795 (0.3058) 2.5480 (0.4754) –

BDAY = Sat -0.4299 (0.0665) -0.1150 (0.1905) –

Table A.4: Parameter estimates and bootstrapped standard errors in parenthesize for K = 2 seg-

ments fitted to bookings on flights departing on Thursday. Results are given for models fit excluding

(Model I) and including (Model II) the price model residuals ξ̂.
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statistics of −0.0032/0.0004 = −8 and −0.0045/0.0010 = −4.5 clearly highlights the

importance of controlling for endogeneity here. Turning to the segments coefficients

in Model II, the estimates are α̂1,1 = 0.0008 and α̂1,2 = −0.0641, suggesting that the

first segment (which we label segment 1) consists of price inelastic customers, whereas

the second consists of customers who are more price sensitive. Given the nature of

the busy short-haul route, it is likely that segment 1 corresponds to a high proportion

of customers travelling for business purposes, whereas the second segment includes

a higher proportion of leisure travellers who are more budget conscious. Comparing

the estimates of the coefficients of PRICE for Models I and II shows that controlling

for endogeneity excentuates the price elasticity for segment 2.

Recall that the reference category in the log-odds at Eqn. (3.4) is segment K = 2.

Therefore, the estimates of β
(π)
2,1 , . . . , β

(π)
7,1 indicate the relative preference of customers

in segment 1 for booking on different day types. The positive (and significant) co-

efficient values for the weekdays indicate that customers from segment 1 are more

likely to make a booking on weekdays, rather than on Saturday or Sunday (where

the latter is the baseline case for the BDAY dummies). This is consistent with the

interpretation of customers in segment 1 booking flights for business purposes.

Figure A.2 plots the estimates of the smooth components s
(π)
0,1 (t), s

(π)
1,1 (DTIME)

for the log-odds equation as well as the estimates of the smooth components

s
(λ)
0 (t), s

(λ)
1 (DTIME) of the baseline booking along with 99% confidence intervals for

Model I. As the right-hand panels show, the probability of a booking increases with

time getting closer to the departure date. Other than that there is only a little varia-

tion in time and DTIME which, as we will see, is also due to the fact that the model

with K = 2 customer segments is too simplistic and does not appropriately describe

customers’ behavior. Comparing the results of Model I with the estimates of Model II,
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Figure A.2: For K = 2 segments, function estimates are given for models fit excluding (Model I, first

two rows) and including (Model II, row 3 and 4) the price model residuals ξ̂. The left-hand panels

provide the function estimates for s
(λ)
0 (t) and s

(λ)
1 (DTIME) in Eqn. (3.2) for bookings on flights

that depart on Thursday. The right-hand side shows the estimates of s
(π)
0,1 (t) and s

(π)
1,1 (DTIME) in

Eqn. (3.4). The estimates are given by the solid line, while the dashed lines are 99% local confidence

bands.
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Figure A.2 shows that the smooth components are less erratic if controlling for price

endogeneity. This is explained by the reduction in the models’ degrees of freedom

(134.42 for Model I and 94.73 for Model II). Though both models show similar re-

sults long before departure, i.e., overall booking intensity is relatively low and the

mix of segments show increasing booking probability of the price-insensitive segment

if going closer to departure, the most striking differences show during the week before

departure. Here, s
(λ)
0 (t) no longer decreases whereas s

(π)
0,1 (t) indicates a decreasing

booking probability of the price-insensitive segment. Additionally s
(π)
1,1 (DTIME) is no

longer significant proposing no segment specific booking probabilities with respect to

departure time. As the interpretations of the smooth components from Model I and

Model II make equal sense, i.e., Model I suggest that there is a general decline in

booking intensity the week prior to departure where only the price-insensitive seg-

ment books whereas Model II depicts a steadily increase in booking intensity and

a price-sensitive segment close to departure (last minute passengers only willing to

travel if the price is cheap) this indecisiveness points towards the possibility of having

at least an additional segment of price-sensitive passengers which Model I is not able

to describe.

Figure A.3 plots q̄1(t) and q̄2(t), see (4.1) for Model II. The upper row shows that the

proportion of customers in segment 1 — customers with demand patterns consistent

with business travel — increases as the departure day gets closer. A strong weekly

pattern due to the booking day type is also apparent. The bottom row of Figure A.3

q̄1(DTIME) and q̄2(DTIME) for Model II. We see that the proportion of customers in

segment 1 increases during the peak periods during the morning and evening, which

is also consistent with business travel.

Last, we estimate any over-dispersion in the Poisson model by computing the Pearson
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residuals

εi,t =
Yi(t)− E(Yi(t))

(Var(Yi(t))1/2
=
yi,t − λ(xi,t, t;θ)

λ(xi,t, t;θ)1/2
.
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Figure A.3: Plot of the average segment proportion computed from the model fitted to booking on

flights departing on Thursday and K = 2 (solid line) with 99% local bootstrapped confidence bands

(dashed lines). Top row: within each panel, q̄k(t) is plotted against days to departure t. Bottom

row: within each panel, q̄k(DTIME) is plotted against DTIME.
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The mean of the squared residuals is 1.77, indicating only moderate over-dispersion

to the Poisson model. We also investigated whether the squared residuals are related

to the covariates, and also to the intensity, and we find no indication of structured

heterogeneity.

4 Model Evaluation for intra-day dependence

So far we have treated bookings as independent, conditional on the covariates. How-

ever, dependence may exist between bookings made on the same day for flights de-

parting on a given day, that is unaccounted for by the Poisson regression model. We

call this ‘intra-day dependence’ in bookings, and to account for it we use a multi-

variate Gaussian copula model (Song, 2000) with the margins given by the Poisson

regression models fitted above. Copulas models for discrete-valued responsesn have

been used previously in the transportation sciences literature; for examples, see Bhat

and Eluru (2009),Eluru et al. (2010), and Smith and Kauermann (2011). However,

here our copula model needs to capture dependence between vectors that differ in

length and composition for each observation, as we now discuss.

4.1 Gaussian Copula Model

In a copula model, dependence between the elements in a random vector of length

m is captured by its ‘copula function’. In practice, only vine or elliptical copulas

currently are suitable for problems where m ≥ 3 and pairwise dependence can vary

between elements. Vine copulas can be difficult to specify (Dissmann et al., 2013), so

that we instead use the Gaussian copula, which is the most popular elliptical copula.

It has copula function

CGa(u1, . . . , um; Γ) = Φm(Φ−1(u1), . . . ,Φ
−1(um); Γ) = Φ(y?1, . . . , y

?
m; Γ) ,
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where Φm(·; Γ) is the distribution function of a N(0,Γ) density with Γ as correlation

matrix, and Φ is the standard normal distribution function. The m ×m correlation

matrix Γ is the copula parameter that requires estimation. We define y?l = Φ−1(ul)

for l = 1, . . . ,m so that (y?1, . . . , y
?
m) ∼ N(0,Γ). As discussed in Danaher and Smith

(2011), because the marginal distributions of the bookings are discrete-valued, we

link the continuous Gaussian copula to the observed bookings through the constraint

Φ−1(Po(yl − 1;λl)) < y?l < Φ−1(Po(yl;λl)) ,

with Po(·;λl) as the distribution function from the fitted Poisson regression model

from above.

Because on our route flights depart at 61 distinct times, we consider capturing intra-

day dependence at the hourly resolution, with flights departing in hourly intervals

from 06:00 to 22:00 (except for flights departing between [06:00,08:00) which we con-

sider as a single interval because only a few flights depart prior to 07:00). This requires

estimation of a 15-dimensional copula function CGa(u1, . . . , u15; Ω), where the param-

eter matrix Ω = {ωi,j} for i = 1, . . . , 15 and j = 1, . . . , 15. For example, element

ω2,4 captures the dependence between flights departing in intervals [08:00,09:00) and

[10:00,11:00). However, there are four complicating factors that make specifying the

likelihood of such a copula model difficult for our data. For any given departure day

d, (i) the number of flights scheduled to depart varies, (ii) the hours at which these

flights depart varies, (iii) multiple flights can leave during the same hourly interval

(particularly during peak periods), and (iv) a different set of flights can be open or

closed for different booking days t ∈ {0, . . . , 120}. Thus, the vector of booking counts

for each departure day d and day to departure t, given as pair (d, t), can be considered

to have ‘ragged edges’, because it differs both in size and composition of its elements.

That is to say, in practice we do not have multiple observations on the 15-dimensional
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vector of bookings and hence direct application of a copula model to address intraday

dependence is not possible.1

To account for these complications, we introduce the following notation. For each

pair of values (d, t), let K(d, t) denote the number of flights for which booking is

possible. Label the hours of departure of these flights as H(d, t) = {h1, . . . , hK(d,t)},

with values from 1 to 15, and where it is possible that hi = hj when two or more

flights are scheduled to leave during the same hour.2 Using this notation, all observed

booking counts (including occurrences of zero bookings) made t days before depar-

ture on flights departing on day d, can be stacked into a K(d, t) vector of varying

length yd,t = (yd,t1 , yd,t2 , . . . , yd,tK(d,t)).
3 Its joint distribution function is also given by the

copula decomposition. It is a property of the Gaussian copula that it is closed under

marginalization, including for a subset of elements as here, so that the distribution

function of yd,t is

F (yd,t; Ω) = ΦK(d,t)(y
?,d,t
1 , y?,d,t2 , . . . , y?,d,tK(d,t); Ωd,t) .

Here, Ωd,t = {ωd,ti,j } is a K(d, t) ×K(d, t) matrix formed from Ω = {ωi,j}, by setting

element ωd,ti,j = ωhi,hj for i = 1, . . . , K(d, t) and j = 1, . . . , K(d, t). That is, Ωd,t

is function of Ω formed by simply ‘pulling out’ the relevant elements. The latent

1As an illustrative example, if on day d1 flights were scheduled to depart at 07:15, 07:30, 9:30

and 10:30, then the vector would be of length K(d1, t) = 4. If 30 days prior to departure the 9:30

flight was cancelled, then the vector would of length K(d1, t) = 3 for bookings with t ≤ 30. And if

on the next departure day d1 + 1 there are additional flights also scheduled to depart at 11:00 and

11:30, then K(d1 + 1, t) = 6 with no cancellations.
2To continue the illustrative example, H(d1, t) = (2, 2, 4, 5) for t > 30, H(d1, t) = (2, 2, 5) for

t ≤ 30 and H(d1 + 1, t) = (2, 2, 4, 5, 6, 6).
3To further continue the illustrative example, if there were 3 and 6 bookings on day t > 30 for

the flights departing at 7:15 and 9:30 on day d1, respectively, then yd1,t = (3, 0, 6, 0).
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variables are distributed y?,d,t = (y?,d,t1 , y?,d,t2 , . . . , y?,d,tK(d,t)) ∼ N(0,Ωd,t), constrained by

the bounds as at Eqn. Φ−1(Po(yl − 1;λl)) < y?l < Φ−1(Po(yl;λl)).

The likelihood of the proposed multivariate copula model is the product of the prob-

ability mass functions obtained from Eqn. ΦK(d,t)(y
?,d,t
1 , y?,d,t2 , . . . , y?,d,tK(d,t); Ωd,t) over all

pairs of (d, t). However, direct evaluation of each of these individual mass functions is

an O(2K(d,t)) operation, which is computationally infeasible for the values of K(d, t)

in our data, which are typically greater than 15. Instead, we follow Pitt et al. (2006),

Danaher and Smith (2011), and Smith and Khaled (2012), and estimate the cop-

ula model using Bayesian data augmentation, which generates the constrained latent

variables y?,d,t observing Φ−1(Po(yl − 1;λl)) < y?l < Φ−1(Po(yl;λl)) using Markov

chain Monte Carlo (MCMC) methods. Details are discussed next.

4.2 Copula Estimation

It is computationally infeasible to evaluate the likelihood of high dimensional copula

models with discrete margins directly; for example, see the discussion in Smith and

Khaled (2012). Therefore, we follow Pitt et al. (2006); Danaher and Smith (2011)

and subsequent authors and estimate the copula parameters using Bayesian data

augmentation. This provides estimates of the copula parameters—and associated

Spearman correlations—from the Bayesian posterior distribution.

Because this is a Bayesian approach, a prior distribution for the copula parameters

has to be adopted. For this, we follow Joe (2006); Daniels and Pourahmadi (2009) and

parameterize Ω through its partial correlations. If 1 ≤ j < i ≤ 15, these are given by

ri,j = Corr(y?j , y
?
i |y?j+1, . . . , y

?
i−1), where the correlation is defined to be unconditional

when j = i − 1. The set of all partials is therefore r = {ri,j; i = 1, . . . , 15; j < i}.

This parameterization is invariant with respect to the ordering of the elements of
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y?, unlike the Cholesky decomposition of Ω used in Smith and Kauermann (2011);

Danaher and Smith (2011) and others. Daniels and Pourahmadi (2009) give a one-

to-one transformation between Ω and r, that is widely attributed to Yule.

The approach generates the latent Gaussian variables y? = {y?,d,t ; d ∈ D, t =

0, . . . , 120} as part of the Markov chain Monte Carlo (MCMC) scheme below. This

greatly simplifies estimation, because the posterior of r conditional on y? is fast to

compute.

Sampling Scheme

Step 1. For d = 1, . . . , D, t = 0, . . . , 120, generate from

f(y?,d,ti |{y?\y?,d,ti }, r,y) = f(y?,d,ti |{y?,d,t\y?,d,ti },Ωd,t, y?,d,t).

Step 2. Generate from f(r|y?) element-by-element using (adaptive) random

walk Metropolis-Hastings.

Step 3. Compute Ω from r using Yule’s one-to-one transformation.

For Step 1, note that y?,d,t ∼ N(0,Ωd,t), from which the mean µ and variance s2

of the conditional distribution of the element y?,d,ti |y?,d,t\y?,d,ti ∼ N(µ, s2) can be

computed easily. To compute the required conditional posterior, this needs to be

combined with the constraint (Ld,ti < y?,d,ti < Ud,t
i ), where the lower bound Ld,ti =

Φ−1
(

Po(yd,ti − 1;λd,ti )
)

and the upper bound Ud,t
i = Φ−1

(
Po(yd,ti ;λd,ti )

)
. Here, Φ is

the standard normal distribution function, and Po(·;λd,ti ) is the distribution function

of the Poisson regression model in Section 4 with intensity value λd,ti for booking

count yd,ti . (Note that we define Po(−1;λ) = −∞ here). The conditional posterior in

Step 1 is therefore a N(µ, s2) distribution constrained to the range (Ld,ti , U
d,t
i ]. The

bounds are computed only once, based on the fitted Poisson regression model, so that

it is fast to sample each element. Moreover, the elements can be sampled in parallel
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because the loops in d and t are not recursive.

To implement the random walk Metropolis-Hastings (MH) in Step 2, f(r|y?) ∝

f(y?|r)f(r), where the prior f(r) is flat on the partial correlations. The augmented

likelihood is

f(y?|r) =
∏
d

∏
t

φK(d,t)(y
?,d,t;0,Ωd,t) .

By first computing Ω from r using Yule’s one-to-one transformation, the matrices

Ωd,t above can be formed by simply extracting their elements from Ω. The density

is then evaluated directly, which requires the Cholesky factorization of each matrix

Ωd,t. When programmed in a low level language (Fortran 90) we found this is practical

to implement on regular PCs with the sample sizes examined here. Moreover, the

products can be readily computed in parallel, greatly speeding the evaluation. Note

that all computations are undertaken on the logarithmic scale for numerical stability,

as is usually the case when implementing a MH step. In general, we run our sampling

scheme for a burnin of 40,000 iterates, and a collect a further 20,000 iterates from

which to compute posterior inference, which takes around 4 hours on a standard

desktop for our dataset.

4.3 Estimated Dependence

As in Section 3, we fit the model separately for different departure day types. We

also further segment by the number of days prior to departure when the booking was

made, and by the booking day type. To measure the overall level of dependence we

compute the posterior estimates of the Spearman pairwise correlations between y?i and

y?j , which is ρsi,j = 6
π

arcsinωi,j for a Gaussian copula parameter matrix Ω = {ωi,j}.

Figure A.4 plots the posterior mean of the matrix of Spearman pairwise correlations

R = {ρsi,j} for bookings made on weekdays for flights departing Thursdays. The
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panels give estimates for bookings made between (a) 2 ≤ t ≤ 30, (b) 30 < t ≤ 60

and (c) t > 60 days prior to departure. Blank cells show where the 99% posterior

probability intervals for ρsi,j contain 0. For bookings made in the month prior to

departure (panel (a)), there is positive dependence throughout. This is likely due to

the omission of factors that drive demand for all flights at a daily level. A similar

feature can be seen with bookings made between long before departure in panels

(b,c), but mostly for flights that depart in the evening. In either case, the level of

dependence is only mild, suggesting the proposed Poisson model accounts for the

vast majority of dependence between bookings for flights that depart on the same

day. While not reported here, very similar results were found for other segmentations

of the bookings data.

5 Penalized Maximum Likelihood Estimation

For simplicity of notation we write πk,i,t instead of πk(t) and define θ
(π)
k =

(β
(π)
k ,γ

(π)
0,k ,γ

(π)
1,k ) as corresponding subvector of θ. The corresponding model design

matrix for the i-th flight at t days to departure is denoted as

w
(π)
i,t =

(
I(BDAYi = j), j = 1, ..., 7;w

(π)
0 (t),w

(π)
1 (DTIMEi)

)
where w

(π)
0 (t) and w

(π)
1 (DTIMEi) are B-spline basis functions in time and departure

time, see also Appendix B. Analogously we define

w
(λ)
i,t =

(
I(BDAYi = j), j = 1, ..., 7;w

(λ)
0 (t),w1(λ)(DTIMEi)

)
and θ(λ) = (β(λ),γ

(λ)
0 ,γ

(λ)
1 )T to be the design matrix and corresponding parameter

vector for modelling λBL. Finally for the group specific part δk we define the matrix

as vi,t = (PRICEi,t) or vi,t = (PRICEi,t, ξ̂i,t) depend on whether we fit the model
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without or with instrumental variable where PRICEi,t is the price for flight i at t

days to departure and ξ̂i,t the fitted residual of the OLS estimation of Eqn. (3.7).

The matching vector of parameters is αk. Then the first partial derivatives, defining

the gradients, are:

5.1 Derivatives

∂`(θ)

∂θ
(π)
k

=
∑
i

∑
t

w
(π)
i,t

T
(Yi,t
λi,t
− 1
)
λ0,i,t

(
πk,i,t(1− πk,i,t)(δk,i,t − δK,i,t)

)
∂`(θ)

∂θ(λ)
=
∑
i

∑
t

w
(λ)
i,t

T
(Yi,t − λi,t)

∂`(θ)

∂αk
=


∑
i

∑
t

vTi,t

(
Yi,t
λi,t
− 1
)

if k = 1

−ck

(∑
i

∑
t

vTi,t

(
Yi,t
λi,t
− 1
)
λ0,i,t

(∑
k

πk,i,tλk,i,t

))
if k > 1

where λ0,i,t = exp(w
(λ)
i,t θ

(λ)), δk,i,t = exp(vi,tγk) and ck = exp(αk). The Fisher infor-

mation results as

E

(
− ∂2`(θ)

∂θ
(π)
k1
∂θ

(π)
k2

T

)
=


∑
i

∑
t
w

(π)
i,t

T
λ20,i,t

(
π2
k,i,t

(
1−πk,i,t

)2(
λk,i,t−λK,i,t

)2
λi,t

)
w

(π)
i,t if k = k1 = k2

∑
i

∑
t
w

(π)
i,t

T
λ20,i,t

( ∏
k∈{k1,k2}

πk,i,t
(
1− πk,i,t

))
Bk,i,tw

(π)
i,t if k1 6= k2

E

(
− ∂2`(θ)

∂θ(λ)∂θ(λ)
T

)
= w

(λ)
i,t

T
λ,i,tw

(λ)
i,t

E

(
− ∂2`(θ)

∂αk1∂αk2
T

)
=



∑
i

∑
t
vTi,tλitvi,t if k = k1 = k2 = 1

ck

(∑
i

∑
t
vTi,tλ

3
0,i,t

A2
k,i,t

λit
vi,t

)
ck if k = k1 = k2 > 1

−ck2
(∑

i

∑
t
vTi,tλ0,i,tAk2,i,tvi,t

)
if k1 = 1, k2 > 1

ck1

(∑
i

∑
t
vTi,tλ

3
0,i,t

Ak1,i,tAk2,i,t

λi,t
vi,t

)
ck2 if k1, k2 > 1, k1 6= k2

where Ak,i,t =

(
K∑
j=k

πj,i,tλj,i,t

)
and Bk,i,t =

λk,i,t−λK,i,t

λi,t
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E

(
− ∂2`(θ)

∂θ
(π)
k1
∂αk2

T

)
=


−
∑
i

∑
t
w

(π)
i,t

T
λ0,i,tπk1,i,t

(
1− πk1,i,t

)
Bk1,i,tvi,t if k1 ≥ 1, k2 = 1

−ck2

(∑
i

∑
t
w

(π)
i,t

T
λ20,i,tπk1,i,t

(
1− πk1,i,t

)
Ak2,i,tBk1,i,tvi,t

)
if k1 ≥ 1, k2 > 1

E

(
− ∂2`(θ)

∂θ
(π)
k ∂θ(λ)

T

)
=
∑
i

∑
t

w
(π)
i,t

T
λBL

(
λk,i,t − λK,i,t

)
πk,i,t

(
1− πk,i,t

)
w

(λ)
i,t

E

(
− ∂2`(θ)

∂θ
(λ)
k ∂αTk

)
=


∑
i

∑
t
w

(λ)
i,t

T
λi,tvi,t if k = 1

−ck

(∑
i

∑
t
w

(λ)
i,t

T
λ0,i,tAk,i,tvi,t

)
if k > 1

As (3.2) and (3.4) are typically not identifiable if the B-splines basis is used a mean

centering constraint, see e.g. Wood (2017), is applied to each smooth component. For

instance centering the component w
(π)
0 (t) is achieved by finding the matrix Z0 which

solves 1Tw
(π)
0 (t)Z0 = 0 where Z0 has one column less then the original design-matrix

w
(π)
0 (t). By the use of the re-parameterized parameter-vector γ

(π)
0,k,c = Z0γ

(π)
0,k for

estimation, the centering constraint is automatically satisfied.

5.2 Penalization Setting

Based on the ideas of Eilers and Marx (1996) and Ruppert et al. (2003). We

impose a penalty on the coefficients relating to the functional effects s
(π)
0k (t),

s
(π)
1k (DTIME),s

(λ)
0 (t) and s

(λ)
1 (DTIME), respectively. We make use of linear B-splines

and penalize neighboring coefficients. To be specific we set w
(π)
0 (t) as linear B-spline

bases with 12 knots located at equidistantly between −11 and 133. We therefore pe-

nalize first order differences of the components of γ
(π)
0k , i.e., γ

(π)
0,k,l−γ

(π)
0,k,l−1, l = 10, . . . , 2.

Analogously we specify the remaining spline base matrices. The penalties can be writ-

ten as quadratic form leading to the penalized likelihood `p(, )

`p(θ, ρ) = `(θ) +
1∑
j=0

K−1∑
k=1

ρ
(π)
jk γ

(π)T

jk D
(π)
jk γ

(π)
jk +

1∑
j=0

ρ
(λ)
j γ

(λ)T

j D
(λ)
j γ

(λ)
j
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where ρ = (ρ
(λ)
0 , ρ

(λ)
1 , ρ

(λ)
0k , ρ

(λ)
1k , k = 1, ..., K) are the penalty parameters to be speci-

fied later. Apparently, if ρ = 0 one obtains unpenalized estimation. The smoothing

matrices D result from taking differences of neighboring coefficients and exactly fol-

lows the convention of Eilers and Marx (1996). This means, for instance, that the

difference of spline coefficients is penalized so that neighbouring spline coefficients are

forced to be of similar size.

The penalty parameters need to be selected, data driven and we here use the Bayesian

Information Criterion (BIC) defined through

BIC(ρ) = −2`(θ̂) + log(n)df(ρ)

where df(ρ) is the degree of the model and n is the number of observations (≈ number

of flights multiplied by the number of considered days to departure). The degree of the

model can be approximated through Fisher matrices as follows. Let F (θ,ρ) denote

the penalized Fisher matrix, i.e.

F (θ,ρ) = E

(
−∂`p(θ,ρ)

∂θ∂θT

)
.

Then, the degree of the model is approximated through

df(ρ) = trace{F−1(θ̂,ρ)F (θ̂,ρ = 0)}

where θ̂ is the penalized parameter estimate. For a justification of (A.6) see Ruppert

et al. (2003) or Krivobokova and Kauermann (2007).

We maximize (5.2) and apply for simplicity the same degree of smoothing for t and

DTIME. That is we set ρ
(π)
jk = ρ

(λ)
j ∀ j = 0, 1. If K = 2 within the optimization
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procedure the control parameters ρ
(π)
01 = ρ

(λ)
0 and ρ

(π)
11 = ρ

(λ)
1 will be fixed to some

value. These values are selected based on a grid search by minimizing the BIC.

6 Bootstrapping for Mixture Models

We compute bootstrap confidence intervals using the ‘leave out one individual’ ap-

proach of Rice and Silverman (1991). Re-sampling is undertaken on the flight level

to accommodate dependence between bookings on the same flight, and consistent

with the likelihood at Eqn. (3.6). For each flight i, booking counts and associated

covariates are re-sampled (with replacement) for the entire window of booking days

between tclosei and topeni .

To control for label switching we choose to order the segment specific price coefficients

αk in a monotone sequence. The label switching problem occurs for such random

samples from its population whenever at least two group labels δk, k = 1, . . . , K from

Eqn. (3.1) change their positions. If the superscript l within δlk denotes the group

label for a random sample, than there exists at least two group indices k for which

δ1k 6= δ2k if a single label switch between two groups occurs.

To avoid label switching and its negative impact on confidence intervals that result

from re-sampling techniques such as boostraping, we propose a frequentist control

approach.

To identify the segment labels δk = exp(α1,kPRICE+α2,kξ̂) in 3.1 we impose ordering

constraints on the elements of the coefficient vector αTj = (αj,1, . . . , αj,K). The iden-

tification of the group labels is finally achieved by constraints the elements of αj such

that αj,k < αj,k+1 or that αj,k > αj,k+1. Allowing for every possible ordering (<,>)

between two neighboring coefficients αj,k, αj,k+1, a total of KJ possible ordering com-
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binations result. For Eqn. 3.1, we have J = 2 and if K = 2, the number of possible or-

dering combinations is 4. This number reduces to K(J−1) if it is acknowledged that the

same ordering of αj,k < αj,k+1 is achieved by αj,k > αj,k+1∀j = 1, . . . , J, k = 1, . . . , K

if the grouping index k no longer runs from the lowest to the highest index but

rather from the highest to the lowest, i.e., αj,k > αj,k+1 transforms into αj,k+1 > αj,k.

Abbreviating αj,k < αj,k+1 by decrj and αj,k > αj,k+1 by incrj, for Eqn. (3.1) ,

with J = 2 and K = 2, every possible ordering constraints belongs to the set

{{decr1, decr2}, {decr1, incr2}}. For a fixed value of K, a separate estimation of (3.6)

for each ordering constraint is performed and the model with the lowest BIC val-

ues among all candidate models is finally chosen and the corresponding ordering

constraint is used to derive bootstrap confidence bands. As the number of possible

ordering constraints gets large for small values of K, we use the ordering constraints

of the K = 2 case for K > 2. A consequence of this restriction is that only monotone

decreasing or increasing ordering constraints between group parameters are allowed,

even though the true ordering between group parameters αj,k is possibly different.

Therefore, applying the minimum BIC rule to models with K > 2 to select the op-

timal number of groups only results in an upper bound and is therefore not exact.

Exemplary let K = 3 be the true group size and α∗
j,1 < α∗

j,k+1 > α∗
j,3 the optimal

ordering constraint. As we only allow for αj,1 < αj,2 < αj,3 or αj,1 > αj2 > αj,3, the

BIC rule selects a model with K = 4 groups as a convex combination of the param-

eters with ordering constraint αj,1 < αj,2 < αj,3 < αj,4 is able to express the relation

of α∗
j,1 < α∗

j,2 > α∗
j,3 by setting α∗

j,1 = αj,1, α
∗
j,2 = αj,3, and α∗

j,3 = π2(.)αj,2 + π4(.)αj,4.



Web Appendix for Interpretable Modeling of Retail Demand 27

7 Two-step Estimator by residual inclusion

We consider the two-step estimator of Marra and Radice (2011) to account for price-

endogeneity. As the technical discussions of Marra and Radice (2011) concerns the

omitted variable bias problem as a characteristic of endogeneity, some minor adjust-

ments are necessary to provide a similar statement for the case of simultaneity.

Given that the number of arriving passengers are specified by Y (t) = λ(t)+uλ, the sys-

tematic component λ(t) characterizes through the segment-specific Eqn. log(δk) (3.1)

how demand depends on PRICE as:

Y (t) = λBL(t)

 K∑
k=1

πk(t) exp
(
α1,kPRICE

)︸ ︷︷ ︸
δk

+ uλ

If PRICE is endogenous the assumption of E (uλ | PRICE,BDAY,DTIME, t) = 0 is

violated and the estimation of the demand-equation results in biased estimates. For

η = η
(
IV,BDAY,t,DTIME

)
we plug the expression PRICE = exp (η + σ2/2) + ξ into

the demand-equation which results in

Y (t) = λBL(t)

(
K∑
k=1

πk(t) exp

(
α1,k

{
exp

(
η + σ2/2

)
+ ξ
}))

+ uλ

As the unobservable error ξ enters the segment-specific equations, biased estimates

result if E (uλ | ξ) 6= 0. For the additive separation of ξ into two parts

ξ = ξ1 + ξ2.

we assume that E (uλ | ξ1) = 0 but E (uλ | ξ2) 6= 0. If ξ2 would be observable we

could include this variable to (3.7) as an additional regressor. Thus, the new predictor

changes to

ηnew = θ0 + θ1IV +
7∑
j=2

I(BDAY = j)θj + f0(t) + f1(DTIME) + θ8ξ2
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Therefore, the update on the PRICE-equation is

PRICE = exp

(
ηnew +

σ2
new

2

)
+ v

Taking the Taylor approximation of exp
(
ηnew + σ2

new

2

)
around θ8ξ2 = 0 results in

PRICE = exp (η) +
∂ exp (ηnew)

∂θ8ξ2
θ8ξ2 + v︸ ︷︷ ︸

:=ζ

Thus estimation of the reduced form of price with Eqn. (3.7) with instrument IV

gives an estimate of ζ that contains information about the unobservable variable

ξ2. Therefore, the inclusion of the estimate ξ̂ within the segment-specific equations

controls for the endogeneity of price.

8 Source-Code and Data-Files

The associated R- and Fortran-code for the estimation algorithm used, as well as the

data for flights departing on a Thursday, can be downloaded at

https://github.com/JFMeyer2k/SMIJ.
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