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S1. Bayesian semiparametric modeling for TNLVPM

S1.1 Truncated Dirichlet process prior for ϕ

Following the same notation in the main text and recalling that the truncated

Dirichlet process (TDP) prior for P is given by

P(·) =
G∑

g=1

πgδϕ∗
g
(·), (S.1)

where G ≥ 1 is any positive integer, ϕ∗
g = {α∗

g1,α
∗
g2, Ψ

∗
ϵg,µ

∗
g,Ψ

∗
δg} are the iid. atoms

with the common distribution H0, and πg are the random weights constructed via the

stick-breaking procedure (Sethurmann, 1994)

π1 = v1, πg = vg

g−1∏
ℓ=1

(1− vℓ) (g = 2, · · · , G− 1), πG =
G−1∏
ℓ=1

(1− vℓ), (S.2)

in which v1, · · · , vG−1 are the iid. Beta(1, c)(c > 0) random variables. As an non-

parametric Bayesian prior, TDP (S.1) was formally proposed by Ishwaran and Zare-

pour (2000) in approximating the well-known Dirichlet process prior (Ferguson, 1973).
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Ishwaran and James (2001) further investigated its theoretical properties and exploit-

ed some applications in the context of univariate normal mixture model. The under-

lying advantages of using (S.1) are that it yields relatively simple Gibbs updates and

allows one to draw values of P from the posterior directly.

Implementation of TDP requires specifying the truncated level G, the concentra-

tion parameter c and the baseline distribution H0. In the context of normal mixture

model, Ishwaran and James (2001) showed that even for large sample sizes, a mere

truncation of G = 50 provides sufficient accuracy in approximating hierarchical mod-

el with G = ∞. In this paper, we take G = 100 in our empirical study. We also

investigate the performance of other choices of G and find the results are not sensitive

to these values. Moreover, as discussed in the main text, the values of c should be

selected with care since they directly control the amount of clustering. We assign

a gamma prior Gamma(ν0, λ0) to c with small ν0 and λ0. This routine favors both

small and large values for c.

Based on the nature of problem, it is naturally to take H0 as the form of

dH0 = p(α∗
g1)p(α

∗
g2,Ψ

∗
ϵg)p(µ

∗
g,Ψ

∗
δg)dϕ

∗
g, (S.3)

in which

p(α∗
g1)

D
= Nr(α10,A10),

p(α∗
g2,Ψ

∗
ϵg) = p(Ψ∗

ϵg)p(α
∗
g2|Ψ∗

ϵg)
D
=

r∏
j=1

IG(αϵ0j, βϵ0j)×N(α20j, ψ
∗
ϵgjA20j),(S.4)

p(µ∗
g,Ψ

∗
gδ) = p(Ψ∗

δg)p(µ
∗
g|Ψ∗

δg)
D
=

s∏
j=1

IG(αδj0, βδj0)×N(µj0, ψ
∗
δgjAµ0j),

where IG(a, b) is the inverse Gamma distribution with scale a > 0 and shape b > 0;

The hyper-parameters α10, A10, αϵ0j, βϵ0j, α20j, A20j, αδj0, βδj0, µj0 and Aµ0j are

treated as fixed and known. In practice, the values of hyper-parameters are often

taken to ensure that the distributions in (S.4) behave as the non-informative priors.

It is worth noting that unlike that in the parametric Bayesian analysis, a degenerated

or non-informative distribution for H0 is prohibitive.

S1.2 Polya-Gamma stochastic expression and re-parametrization
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We develop a Bayesian procedure for analyzing the proposed model. The MCMC

sampling method is used to conduct posterior analysis. To facilitate the posterior

sampling, we follow the same idea in Polson, Scott and Windle (2013) and rewrite

the logistic model in Part one as follows

euijηcij

1 + eηcij
= 2−1 exp{κijηcij}

∫ ∞

0

exp

{
−1

2
u∗ijη

2
cij

}
pPG(u

∗
ij)du

∗
ij, (S.5)

where κij = uij−1/2 and ηcij = α1ij+xT
1iγ1j+βT

1jωi; pPG(·) is the probability density

function of standard Polya-Gamma distribution PG(1,0)(Polson, Scott and Windle,

2013), specified via

PG(1, 0)
D
=

1

2π2

∞∑
k=1

1

(k − 1/2)2
Ek,

where Eks are the iid. standard exponential random variables; ‘D’ denotes the i-

dentical distribution. In this case, the logistic model can be treated as the marginal

density of the following joint distribution

p(uij, u
∗
ij|ωi,ϕi,θ) = 2−1 exp

{
κijηcij −

1

2
u∗ijη

2
cij

}
pPG(u

∗
ij).

Note that pPG(u
∗
ij) does not involve ωi, θ and ϕi, hence, the conditional distribution

of ωi, given uij, u
∗
ij, θ and ϕi, is independent of pPG(u

∗
ij) and has a closed form.

This will facilitate the routine coding and avoid tediously tuning in the Metropolis-

Hastings(MH, Metropolis et al., 1953; Hastings, 1970) algorithm. However, a disad-

vantage in the expression (S.5) is that the full conditional p(u∗ij|uij,ωi,θ,ϕi) is not

standard since it involves the sum of infinite many terms. This invokes the difficul-

ty in simulating observations. The problem can be addressed via indirect sampling

methods such as the rejection-acceptance sampling (Gilks and Wild, 1992; Polson,

Scott and Windle, 2013) or the slice sampling algorithm (Walker, 2007) .

The semiparametric model (S.2) can be re-parameterized further. Let Ki(i =

1, · · · , N) be the indicator variable which takes value in {1, · · · , G} such that ϕi =
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ϕ∗
Ki
. Then, we can rewrite our formulation as the following hierarchy

p(uij, u
∗
ij|Ξ∗, Ki,ωi)

D
= 2−1 exp

{
κijηcij −

1

2
u∗ijη

2
cij

}
pPG(u

∗
ij),

p(zij|Ξ∗, Ki, uij = 1,ωi)
D
= N(ηzij, ψϵij),

p(vi|Ξ∗, Ki,ωi)
D
= Ns(µi +Λωi,Ψδi),

p(ηi|ξi)
D
= Nm1(B

−1
0 ΓF(ξi),B

−1
0 Ψ−1

δ B−T
0 ), (S.6)

p(ξi|Φ)
D
= Nm2(0,Φ),

Ki = ·|π iid.∼
G∑

g=1

πgδg(·),

ϕ∗
g, iid. ∼ H0, (π|c) ∼ p(π|c),

where Ξ∗ = {ϕ∗
1, · · · ,ϕ∗

G} is the collection of atoms, π = (π1, · · · , πG) is the vector

of random weights and ηzij = α2ij + xT
2iγ2j + βT

2jωi.

Let U = {uij}, Z = {zij}, V = {vi} be the sets of observed variables, and

U∗ = {u∗ij}Ni=1, Ω = {ωi}Ni=1 and K = {K1, · · · , KN} be the collections of latent

variables. It can be shown that conditional on c and θ, the joint distribution of

{U∗,Ω,K,π,Ξ∗} is given by

p(U,Z,V,U∗,Ω,K,π,Ξ∗|θ, c) ∝ p(U,U∗|Ω,K,Ξ∗,θ)

×p(Z|U,Ω,K,Ξ∗,θ)p(V|Ω,K,Ξ∗,θ)p(Ω|θ)p(L|π)p(π|c)p(Ξ∗),

where the fixed covariates are suppressed for notation compactness. The observed

likelihood can be obtained by integrating out the latent quantities, which yields the

complicated form due to high dimensional integrals present.

S1.3 Model identification

In this section, we will show that the proposal models involved in the simulation

study and real example are identified with their free parameters θ. The method

relies on the well-known two-indicator rule in the CFA model (see, e.g., Bollen, 1989,

pp.247) and the stochastic representation of the logistic regression model (Holmes

and Held, 2006).
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We re-express the logistic regression model (Part one) as the hierarchical form:

ui =

{
1 u∗j > 0
0 u∗i ≤ 0

,

u∗i = α1 + xT
1iγ1 + βT

1ωi + ϵ∗i , (S.7)

ϵ∗i , iid. ∼ Lo(1),

where Lo(1) is the standard logistic distribution and ϵ∗i is independent of latent factors

and other error variables.

Let w∗
i = (u∗i , zi,v

T
i )

T , ε∗i = (ϵ∗i , ϵi, δ
T
i )

T , and write

αall =

 α1

α2

µ

 , γall =

 γ1

γ2

0

 ,Λall =

 β1

β2

Λ

 , and Ψall =

 π2/3 0 0
0 ψϵ 0
0 0 Ψδ

 .

The joint distribution of w∗
i is given by

w∗
i = αall + γallxi +Λallωi + ε∗i . (S.8)

Here, x1i = x2i by the simulation design and the real example. The first two moments

of wi are given by

Ew∗
i = αall + γallxi +Λallµω, Cov(w∗

i ) = ΛallΣωΛ
T
all +Ψall, (S.9)

where µω and Σω are the mean and covariance matrix of ωi respectively.

Note that the observed likelihood p(ui, zi,vi|θ) is uniquely determined by p(w∗
i |θ),

hence, we are only required to show that θ is uniquely determined based on p(w∗
i |θ).

We first show that the structural parameters Γ, Φ andΨζ involved in the nonlinear

structure equation are identified assuming that the mean and covariance matrix of

ωi are uniquely determined by the model. As the matter of fact, recalling that

F(ξi) = (ξi1, ξi2, ξi1ξi2)
T with (ξi1, ξi2) ∼ N2(0,Φ) and ζi ∼ N(0, ψζ), it can be shown

that µω = (Γ3ϕ12,0
T
2 )

T , and

Σω =

 τ + ψζ Γ1ϕ11 + Γ2ϕ12 Γ1ϕ12 + Γ2ϕ22

ϕ11 ϕ12

sym. ϕ22

 , (S.10)

where τ = Γ2
1ϕ11 + Γ2

2ϕ22 + Γ2
3Eξ

2
i1ξ

2
i2 + 2Γ1Γ2ϕ12; Eξ

2
i1ξ

2
i2 is the second-order mixed

moment of ξi1 and ξi2, only depending on the elements in Φ. Obviously, if µω and

Σω are identified, then the structure parameter Γ, Φ and Ψζ are all identified.
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Next, we show that the unknown parameters including µω and Σω involved in

(S.8) are identified.

(i) For the simulation study, note that Λ is orthogonal in columns with Λ11 =

Λ32 = Λ52 = 1 and Ψδ is set to be diagonal. It follows from the two-indicator rule in

the CFA that Λ, Ψδ and Σω are identified. This induces the identification of βj(j =

1, 2) by the identification of covariance of w∗
i . Moreover, note thatX = (x1, · · · ,xN)

T

is full of rank in column according to the simulation design, the identification of αj,

γj and µω are obtained immediately.

(ii) For the real example, note that

Λall =

 1 β2 0 0 0 0 0
0 0 1 Λ22 0 0 0
0 0 0 0 1 Λ43 Λ53

 (S.11)

and Ψall is diagonal. The identification of Λall, Ψall and Σω follows still from the

two-indicator rule, which indicates the determinacy of βj, Λ, ψϵ and Ψδ. The iden-

tification of αj, γj and µω are obtained similar to (i).

S1.4 Issue on the number of factors.

Another issue in the current analysis involves the determinacy of the number of

factors. This problem is usually formulated within the framework of exploratory factor

analysis (EFA) and the confirmatory factor analysis (CFA). The basic formulation of

EFA is that for a given set of response variables, one wants to search a fewer number

of uncorrelated latent factors that will account for the correlations of the response

variables so that when the latent factors are partialled out from the response variables,

there no longer remain any correlations between them. The number of factors is not

preassigned and usually determined via the model selection procedure. The factor

rotations are also required to obtain better interpretations. CFA is an extension

of EFA and is developed by Jöreskog and Sörborm (1996). In this context, the

experimenter has already obtained from the substantive theory or the exploratory

analysis a certain amount of knowledge about the model and is in a position to

formulate a more precise model. The factors and their number are determined in

advance. The model is identified via fixing parameters, the resulting solution is
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directly interpretable, and the subsequent rotation of factor loading matrix is not

necessary. Goodness-of-fits of the posited models are compared to establish a plausible

model for substantive theory in the real world. Our development is along the lines of

the CFA and the number of factors is specified in advance based on the nature of the

problem under consideration.

S2. Markov Chain Monte Carlo sampling and full Conditionals

S2.1 MCMC sampling scheme

The sampling scheme in the blocked Gibbs sampler includes four types of moves:

updating the components involved in the two-part model, the components in the

factor analysis model, the components in the structural equation and the components

in the semiparametric model, which can be formulated as the following conditional

distributions:

(i) p(U∗|Ω,K,Ξ∗,θ,U),

(ii) p(Ω|U∗,K,Ξ∗,θ,U,Z,V),

(iii) p(θ|Ω,K,Ξ∗,U∗,U,Z,V),

(iv) p(π,Ξ∗|K,U∗,θ,Z,V),

(v) p(K|U∗,π,Ξ∗,θ,Z,V), and

(vi) p(c|π),

in which the redundant variables are removed from the conditioning set either by

explicit integration or by conditional independence. Note that except for updating Ω,

the conditionals involved in all moves are the standard distributions such as normal,

Gamma and inverse-Gamma. Hence, simulating observations from these distributions

are relatively easy and fast. However, drawing Ω is not straightforward since the

nonlinear function F(·) are presented. We implement MH algorithm to tackle this

problem.

S2.2 Full conditionals

In this section, we will present the technical details on the full conditional distri-

butions involved in the blocked Gibbs sampler.

(i) p(U∗|Ω,K,Ξ∗,θ,U);
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As discussed in S1.2, conditioning upon Ω,K,Ξ∗,θ and U, the posterior distribu-

tion of U∗ does not depend on Z and V, and is still the Polya-Gamma distribution.

By some algebra calculations, we have

p(U∗|θ,Ω,U) =
N∏
i=1

r∏
j=1

p(u∗ij|θ,ωi), and

p(u∗ij|θ,ωi)
D
= PG(1, α1ij + γ̃T

1jω
∗
1i). (S.12)

By taking advantage of rejection sampling method, Polson, Scott and Windle (2013)

devised an efficient algorithm for generating observations from this target distribution,

see Polson, Scott and Windle (2013) for more details. Their algorithm is adopted here

to draw U∗.

(ii) p(Ω|Y∗,K,Ξ∗,θ,Z,U,V).

Based on (S.6), it can be shown that

p(Ω|U∗,K,Ξ∗,θ,U,Z,Y) =
N∏
i=1

p(ωi|U∗,K,Ξ∗,θ,U,Z,Y), (S.13)

where p(ωi|U∗,K,Ξ∗,θ,U,Z,Y) ∝ p(ui,u
∗
i |ωi, Ki,Ξ

∗,θ)p(zi|ui,ωi, Ki,Ξ
∗,θ)p(vi|ωi,

Ki,Ξ
∗,θ)p(ηi|ξi,θ)p(ξi|Φ). Hence, we can generate Ω by drawing ωi independent-

ly from p(ωi|Y∗,K,Ξ∗,θ,U,Z,Y). However, due to that nonlinear function F(·)

in the structural equation is involved, no closed form can be available for this tar-

get distribution. We implement the Metropolis and Hastings algorithm. Specifi-

cally, given the current value ω
(h)
i at the hth iteration in the MH algorithm, we

draw a candidate ω∗
i from the proposal distribution Nm(ω

(h)
i , τΣ∗

i ), where Σ∗
i =

(βT
1β1 + βT

2Ψ
∗−1
ϵi β2 +ΛTΨ−1

δi Λ+Σ−1
ω )−1, and

Σ−1
ω =

(
B−T

0 Ψ−1
ζ B−1

0 −B−T
0 Ψ−1

ζ Γ∆

−∆TΓTΨ−1
ζ B−1

0 Φ−1 +∆TΓTΨ−1
ζ Γ∆

)
with ∆ = ∂F(ξi)/∂ξ

T
i |ξi=0

and Ψ∗−1
ϵi = diag{ui1/ψϵi1, · · · , uir/ψϵir}, then we accept

this candidate ω∗
i as ω

(h+1)
i with the probability

min

{
1,

p(ω∗
i |U∗,K,Ξ∗,θ,U,Z,Y)

p(ω
(h)
i |U∗,K,Ξ∗,θ,U,Z,Y)

}
.
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The quantity τ is chosen so that the average rate is approximately 0.45 (see Cowles,

1996).

(iii) p(θ|U∗,Ω,K,Ξ∗,U,Z,V)

Note that θ = {γ̃1, γ̃2,Λ,Π,Ψδ,Φ}. Hence, we can achieve the draw of θ by draw-

ing sequently (1) γ̃1 from p(γ̃1|Ω,K,Ξ∗,U∗,U); (2) γ̃2 from p(γ̃2|Ω,K,Ξ∗,U,Z);

(3) Λ from p(Λ|Ω,K,Ξ∗,V); (4) {Π,Ψδ} from p(Π,Ψδ|Ω) and (5) Φ from p(Φ|Ω).

Firstly, let x∗
1i = (xT

1i,ω
T
i )

T . A direct calculation shows that

p(γ̃1|Ω,K,Ξ∗,U∗,U) =
r∏

j=1

p(γ̃1j|Ω,K,Ξ∗,U∗,U)
D
=

r∏
j=1

Nq1+m(µ̂γ1j, Σ̂γ1j), (S.14)

in which

µ̂γ1j = Σ̂
−1

γ1

(
Σ̃

−1

1j0γ̃1j0 +
N∑
i=1

x∗
1i(κij − u∗ijα1ij)

)
, Σ̂

−1

α1
= Σ̃

−1

1j0 +
N∑
i=1

x∗
1ix

∗T
1i .

Secondly, let x∗
2i = (xT

2i,ω
T
i )

T . Similar to update γ̃1, we can follow the standard

regression analysis procedure and show that

p(γ̃2|Ω,K,Ξ∗,U,Z)
D
=

r∏
j=1

Nq2+m(µ̂γ2j, Σ̂γ2j), (S.15)

where

µ̂γ2j = Σ̂γ2j

(
Σ̃

−1

2j0γ̃2j0 +
N∑
i=1

x∗
2iuij(zij − α2ij)

)
, Σ̂

−1

γ2j = Σ̃
−1

2j0 +
N∑
i=1

uijx
∗
2ix

∗T
2i .

Thirdly, for ease of exposition, we introduce the following notation

Sωvk =
G∑

g=1

ωi(vik − µik), Sωω =
G∑

g=1

ωiω
T
i , and Svvk =

G∑
g=1

(vgk − µk)
2.

By some algebra, it can be shown that

p(Λ|Ω,K,Ξ∗,V) =
s∏

k=1

p(Λk|ψδk,Ω,V)
D
=

s∏
k=1

Nm(âδk, Ĥδk), (S.16)

where

âδk = Ĥδk[H
−1
δ0kΛ0k + ψδkSωvk], Ĥδk = (H−1

δ0k + ψδkSωωk)
−1.
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Fourthly, let Gi = G(ωi) and

SGηℓ =
N∑
i=1

Giηiℓ, SGG =
N∑
i=1

GiG
T
i , and Sηηℓ =

N∑
i=1

η2iℓ.

Similar to that in Λ and Ψδ, it can be shown that

p(Π,Ψζ |Ω) =

m1∏
ℓ=1

p(ψζℓ|Ω)p(Πℓ|ψζℓ,Ω)

D
=

m1∏
ℓ=1

IG(α̂ζℓ, β̂ζℓ)×Nm(âζℓ, ψζℓĤζℓ), (S.17)

where

âζℓ = Ĥζℓ[H
−1
ζ0ℓΠ0ℓ + SGηk], Ĥζℓ = (H−1

δ0ℓ + SGG)
−1,

α̂ζℓ = αζ0ℓ +N/2,

β̂ζℓ = βζ0ℓ +
{
ΠT

0ℓH
−1
ζ0ℓΠ0ℓ + Sηηℓ − âT

ζℓĤ
−1
ζℓ âζℓ

}
/2.

Lastly, let Sξξ =
N∑
i=1

ξiξ
T
i . It can be shown straightforwardly that

p(Φ|Ω)
D
= IWm2(ρ0 +N, R̂−1) (S.18)

where R̂−1 = R−1
0 + Sξξ.

(viii)p(π,Ξ∗|K,Ω, c,Y∗,U,Z,V)

To derive the conditional distributions corresponding to the mixing proportions

π and atoms Ξ∗, we notice that

p(π,Ξ∗|L,Ω, c) = p(π|K, c)p(Ξ∗|K,Ω),

and p(π|K, c) ∝ p(K|π)p(π|c). Hence drawing {π,Ξ∗} can be accomplished by first

drawing π from p(π|K, c) and then drawing Ξ∗ from p(Ξ∗|K,Ω). Let mg denote the

number of Li such that Li = g. By some algebraic calculations, it can be found that

the full conditional distribution of π is given by

π1 = v∗1, πg =
∏
l<g

(1− v∗l ), πG =
∏
l<G

(1− v∗l ), (S.19)
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in which v∗g are independently distributed with Beta(1 +mg, c +
∑G

ℓ=g+1mg). As a

result, draw of π can be achieved by first sampling G − 1 independent v∗g and then

transforming them via (S.19).

Let K∗ = {K∗
1 , · · · , K∗

m} denote the set of unique values among K and Ξ∗
K∗ =

{ϕ∗
K∗

1
, · · · ,ϕ∗

K∗
m
} be the distinct atoms; Ξ∗

−K∗ is the set of Ξ∗ with Ξ∗
−K∗ removed. It

is obvious that

p(Ξ∗|K,Ω) = p(Ξ∗
K∗|K,Ω)p(Ξ∗

−K∗|K,Ω). (S.20)

Note that the components in Ξ∗
−K∗ are iid. with the baseline distribution H0 and

hence sampling is straightforward. Further, let mg be the size of set {i : Ki = g}

and n∗
gj be the number of individuals such that Ki = g and uij = 1. To derive the

conditional distribution, we let

κ̄∗
g : κ̄

∗
gj =

∑
i:Ki=g

(κij − u∗ijγ̃1x
∗
1i), z̄∗gj =

∑
i:Ki=g,uij=1

(zij − γ̃T
2jx

∗
2i),

Szzg =
∑

{i:Ki=g,uij=1}

(zij − γ̂T
j x

∗
1i)

2, Svvg =
∑

{i:Ki=g,uij=1}

(vij −ΛT
j ωi)

2.

It can be shown that for any g ∈ K∗,

p(α∗
1g|K,Ω,U∗,θ,U)

D
= Nr(m̂α1g, Σ̂α1g),

p(α∗
2g,Ψ

∗
ϵg|K,Ω,θ,U,Z) =

r∏
j=1

p(α∗
2gj, ψ

∗
ϵgj|K,Ω,θ,U,Z)

D
=

r∏
j=1

IG(α̂ϵgj, β̂ϵgj)×N(m̂α2gj, ψ
∗
ϵgjσ̂

2
α2gj

),

p(µg,Ψ
∗
δg|K,Ω,θ,V) =

s∏
k=1

p(µ∗
gk, ψ

∗
δgk|K,Ω,θ,U,Z)

D
=

s∏
k=1

IG(α̂δk, β̂δk)×N(m̂µk, ψ
∗
δgkσ̂

2
µgk),
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in which

Σ̂
−1

α1g
= (mgIr +A−1

10 )
−1, m̂α1g = Σ̂α1g

[
A−1

10 α10 +mgκ̄
∗
g

]
,

σ̂2
α2gj

= (n∗
gj + A−1

20j)
−1, m̂α2gj = σ̂2

α2gj

[
A−1

20jα20j + ngj z̄
∗
gj

]
,

α̂ϵgj = αϵ0j + n∗
gj/2,

β̂ϵgj = βϵ0j + (A−1
20jα

2
20j + Szzg − m̂2

α2gj
/σ̂2

α2gj
)/2;

σ̂2
µgk = (m∗

g + A−1
µ0k)

−1, m̂µgk = σ̂2
µgk

[
A−1

µ0kµ0k + ngj v̄
∗
gk

]
,

α̂δgk = αδ0j + n∗
gk/2,

β̂δgk = βδ0j + (A−1
µ0kµ

2
0j + Svvk − m̂2

µgk/σ̂
2
µgk)/2.

(ix) p(K|Ω,π)

Note that

p(K|U∗,π,Ω,U,Z,V,θ) =
N∏
i=1

p(Ki|U∗,π,Ω,U,Z,V,θ)

and

p(Ki|U∗,π,Ω,U,Z,V,θ) ∝

p(u∗
i ,ui|ωi, Ki,Ξ

∗,θ)
r∏

j=1

p(zij|uij = 1,ωi, Ki,Ξ
∗,θ)p(vi|ωi, Ki,Ξ

∗,θ)p(Ki|π),

hence, we have

(Ki = ·|Ω,π) iid.∼
G∑

g=1

πigδg(·) (S.21)

in which

π∗
ig = cigπgp(u

∗
i ,ui|ωi, Ki,Ξ

∗,θ)
r∏

j=1

p(zij|uij = 1,ωi, Ki,Ξ
∗,θ)p(vi|ωi, Li,Ξ

∗,θ),

and cig is the normalization constant such that
∑G

g=1 π
∗
ig = 1.0.

(x) p(c|π)

Similar to Xia and Gou (2016), it can be shown directly that

p(c|π) D
= Ga

(
ν0 +G− 1, λ0 −

G−1∑
g=1

log(1− v∗g)

)
(S.22)

in which v∗gs are given in (S.19).
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S3. Simulation study

In this section, simulation study is presented to assess the performance of the

proposed procedure. The main objective is to assess the accuracy of estimates of

unknown parameters and the adequacy of model fits when the posited models are

correctly specified or deviated away from the true model. For this end, we take one

semi-continuous variable (r = 1), six continuous manifest variables (s = 6) and three

latent factors (m = 3), which are analogous to our real example. The nonlinear

structural equation is taken as

ηi = Γ1ξi1 + Γ2ξi2 + Γ3ξi1ξi2 + ζi, (S.23)

where (ξi1, ξi2) ∼ N2(0,Φ) and ζi ∼ N(0, ψζ). The fixed covariates involved in

the model are taken to be identical: x1i = x2i = (x1ij, x2ij, x3ij)
T , in which x1ijs

are independently generated from uniform distribution on the unit interval [0, 1],

x2ijs are independently drawn from standard normal distribution, whereas x3ijs are

independently generated from Bernoulli distribution with occurrence probability 0.3.

We considered three types of data which correspond to three different true pop-

ulation models. The first one is generated from single parameter model (denoted by

‘PAR’) given by

ui ∼ pLo(ui|α1 + γT
1 xi + βT

1ωi),

zi ∼ N(α2 + γT
2 xi + βT

2ωi, ψϵ), (S.24)

vi ∼ N6(µ+Λωi,Ψδ),

where pLo(u|ϑ) is the standard logistic density function with the predictor ϑ. The

second data set (denoted by ’MIX’ model) is generated from the two-component

mixture model

ui ∼
2∑

k=1

π(k)pLo(ui|α(k)
1 + γT

1 xi + βT
1ωi),

zi ∼
2∑

k=1

π(k)N(α
(k)
2 + γT

2 xi + βT
2ωi, ψ

(k)
ϵj ), (S.25)

vi ∼
2∑

k=1

π(k)N6(µ
(k) +Λωi,Ψ

(k)
δ ),
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where the parameters with superscript ‘(k)’ (k = 1, 2) are referred to as Component

k; π(k)(k = 1, 2) are the mixing proportions satisfying: π(k) > 0 and π(1) + π(2) = 1.

The last one is drawn from the parametric model similar to ’PAR’ but with heavy

tails (denoted by ‘HT’) given by

ui ∼ T +
2 (ui|α1 + γT

1 xi + βT
1ωi),

zi ∼ t2(α1 + γT
2 xi + βT

2ωi, ψϵ), (S.26)

vi ∼ t2(µ+Λωi,Ψδ),

where tν denotes the t-distribution with degree of freedom ν and T +
ν is the indicator

function of tν-distribution defined similar to the well-known Probit function, that is,

ui = 1 if T +
2 > 0 and 0 otherwise.

The true population values of unknown parameters in structural equation (S.23)

are taken as Π = (0.0∗, 0.5, 0.5, 0.5), ψζ = 1.0 and

Φ =

(
1.0∗ 0.3
0.3 1.0∗

)
.

This produces that the true mean of (ηi, ξi1, ξi2)
T is (0.3, 0.0, 0.0)T and the covariance

matrix  1.9225 sym
0.625 1.0
0.625 0.3 1.0

 . (S.27)

For the (S.24) and (S.26), the true population values of unknown parameters in

Eq.s (S.24), (S.25) and (S.26) are taken as follows: α1 = α2 = µj = −1.5(j =

1, · · · , 6), γ1 = (0.7, 0.7, 0.7)T , γ2 = (1.2,−0.7, 0.5)T , β1 = (0.8, 0.8, 0.8)T , β2 =

(0.5, 0.5, 0.5)T , ψϵ = 0.49, Ψδ = 0.49I6 and

Λ =

 1.0∗ 0.8 0.0∗ 0.0∗ 0.0∗ 0.0∗

0.0∗ 0.0∗ 1.0∗ 0.8 0.0∗ 0.0∗

0.0∗ 0.0∗ 0.0∗ 0.0∗ 1.0∗ 0.8

 .

where the elements with an asterisk are considered as fixed for model identification.

For ’MIX’, the true values of component-invariant parameters are set as the same

as those in (S.24) and (S.26), while the values of component-specific parameters are

taken as in Component one in (S.25)while α
(2)
1 = α

(2)
2 = µ

(2)
j = −1.5, α

(2)
1 = α

(2)
2 =
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µ
(2)
j = 2.0(j = 1, · · · , 6), ψ(2)

ϵ = 0.49, ψ
(2)
ϵ = 1.0, Ψ

(1)
δ = 0.49I6 Ψ

(2)
δ = I6 and

(π(1), π(2)) = (0.3, 0.7).

With the the settings given above, we generate the three data sets by first drawing

latent factors from the structural equation (S.23) and then drawing continuous and

semi-continuous observations from (S.24), (S.25) and (S.26) respectively. To investi-

gate the effects of sample size on the accuracy of estimates of unknown parameters,

we take N = 300 and 800, which represent the small and the large levels of sample

sizes.

For each data set we consider two Bayesian estimates for the unknown parameters

θ: one is obtained under the parametric setting (denoted by ‘BAY I’) and the other

is under the semiparametric setting (denoted by ‘BAY II’). The parametric method is

defined as Equations (S.24) associated with (S.23), while the semiparametric model

is specified via Equations (S.6) with truncated level G = 100. Note that under the

parametric setting, Equations (S.4) and the prior in the main text together specify

the priors of model parameters. The following inputs of the hyperparameters in (S.4)

and the prior distributions are considered both for obtaining estimates BAY I and II:

α10 = 0, α20 = 0.00, A10 = 100, A20 = 100, µ0k = 0.00, Aµ0k = 100.0(k = 1, · · · , 6),

αϵ0 = αδk0 = αζℓ0 = 9.0, βϵ0 = βδk0 = βζℓ0 = 8.0, γ̃10 = γ̃20 = 06, Σ̃1j0 = Σ̃2j0 =

100× I6, Λ0k and Πj0 are set to be the true values in Λ and Π; H0δj = I3, Hζ = 1.0,

ρ0 = 10.0 and R−1
0 = 7I2. These values are the standard inputs ensuring the priors

to be inflated enough. In addition, we take λ0 = ν0 = 2.0 to encourage smaller and

larger values for c. We also try other inputs for the hyperparameters and find thatthe

resulting estimates are more robust against these choices.

The proposed MCMC algorithm given in Section S2 is implemented to obtain

estimates of unknown parameters. For the MH algorithm, the values of tuning pa-

rameters are taken to keep the acceptance rate about 0.43 in all scenarios. A few test

runs are conducted as pilots to monitor the convergence of the Gibbs sampler. We

plot the values of EPSR (Gelman and Rubin, 1987) of unknown parameters against

the number of iterations under three dispersed starting values. Figure 1 presents the

plots of values of EPSR under the semiparametric setting for the ‘MIX’ data with
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N = 300 (the others are similar and omitted for saving space). It can be found that

0 500 1000 1500 2000 2500 3000
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iteration

EP
SR

1.2

Figure 1: Plots of values of EPSR of estimates of unknown parameters against the
number of iterations under three different staring values in the simulation study:
semiparametric model with G = 100 and N = 300
.

the convergence of estimates is fast and the values of EPSR are less than 1.2 in about

800 iterations. To be conservative, we remove the first 2000 observations as burn-in

and collect 3000 observations further for computing the bias (BIAS), the root mean

squares (RMS) and the standard deviation (SD) across 100 replications. The BIAS

and RMS of the j-th component θ̂j in estimates are defined as follows:

BIAS(θ̂j) = (θ̄j − θ0j ), θ̄j =
1

100

100∑
κ=1

θ̂
(κ)
j , RMS(θ̂j) =

√√√√ 1

100

100∑
κ=1

(θ̂
(κ)
j − θ0j )

2, (S.28)

where θ0j is the j-th element of population parameters θ0. The summaries of estimates

under two fittings are reported in Tables 1 to 3, where the sums of the SD and RMS

across the estimates are presented in the last rows.

Examinations of Tables 1 to 3 present the following findings: (i) For the ‘MIX’

and ’HT’ data, the estimate BAY I produces incorrect results. For ‘MIX’ data, the

total RMS and SD are 10.727 and 4.106 for N = 300, and 10.505 and 2.591 for

N = 800 respectively, while for ’HT’ data, the sum of RMS and the sum of SD are

respectively 13.504 and 5.888 for N = 300 and 13.711 and 4.12 for N = 800. This
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Table 1: Summary statistics of estimates of unknown parameters based on the ‘PAR’
data: simulation study.

N = 300 N = 800

BAY I BAY II BAY I BAY II

Para. BIAS RMS SD BIAS RMS SD BIAS RMS SD BIAS RMS SD

γ11 -0.102 0.355 0.385 0.039 0.467 0.518 -0.022 0.236 0.238 -0.173 0.381 0.354
γ12 -0.141 0.299 0.553 0.106 0.199 0.207 -0.087 0.442 0.379 0.036 0.134 0.126
γ13 0.167 0.299 0.228 -0.163 0.429 0.401 0.020 0.160 0.129 -0.044 0.306 0.249
β11 0.076 0.259 0.255 0.045 0.337 0.250 0.027 0.131 0.146 0.039 0.154 0.149
β12 0.197 0.383 0.347 0.217 0.428 0.337 0.056 0.208 0.194 0.097 0.207 0.195
β13 0.134 0.285 0.341 0.121 0.534 0.345 0.029 0.185 0.191 0.011 0.158 0.192
γ21 -0.069 0.218 0.207 -0.02 0.256 0.324 -0.016 0.115 0.124 -0.054 0.199 0.202
γ22 -0.165 0.339 0.346 -0.014 0.080 0.103 -0.059 0.232 0.208 0.019 0.052 0.062
γ23 0.018 0.091 0.112 -0.114 0.194 0.218 0.000 0.043 0.064 0.037 0.115 0.127
β21 0.052 0.116 0.116 0.014 0.109 0.111 0.002 0.055 0.067 -0.002 0.059 0.066
β22 -0.066 0.208 0.203 -0.029 0.189 0.201 -0.024 0.112 0.117 0.008 0.090 0.115
β23 -0.057 0.172 0.201 -0.051 0.155 0.203 -0.032 0.100 0.118 0.034 0.102 0.119
Λ22 0.000 0.028 0.032 0.008 0.026 0.032 0.000 0.019 0.020 0.004 0.021 0.019
Λ43 -0.005 0.032 0.057 -0.001 0.044 0.056 0.009 0.036 0.035 0.005 0.027 0.035
Λ53 0.008 0.048 0.056 0.007 0.053 0.058 -0.012 0.043 0.035 -0.002 0.030 0.035
Π11 0.040 0.104 0.108 0.042 0.088 0.110 0.046 0.075 0.064 0.025 0.055 0.063
Π12 0.035 0.114 0.106 0.054 0.117 0.108 -0.006 0.081 0.066 0.033 0.066 0.065
Π13 0.033 0.115 0.101 0.064 0.100 0.104 0.011 0.065 0.058 0.020 0.064 0.060
ψζ -0.136 0.191 0.133 -0.108 0.146 0.135 -0.040 0.098 0.091 -0.073 0.105 0.089
Φ22 -0.053 0.084 0.060 -0.074 0.093 0.060 -0.055 0.066 0.037 -0.059 0.066 0.037

Total - 3.741 3.946 - 4.043 3.882 - 2.502 2.381 - 2.392 2.360
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Table 2: Summary statistics of estimates of unknown parameters based on the ‘MIX’
data: simulation study.

N = 300 N = 800

BAY I BAY II BAY I BAY II

Para. BIAS RMS SD BIAS RMS SD BIAS RMS SD BIAS RMS SD

γ11 0.093 0.388 0.538 0.119 0.364 0.566 -0.122 0.363 0.372 -0.173 0.381 0.354
γ12 -0.071 0.195 0.198 0.048 0.219 0.222 -0.119 0.192 0.129 0.036 0.134 0.126
γ13 -0.099 0.287 0.421 0.049 0.413 0.458 -0.015 0.192 0.274 -0.044 0.306 0.249
β11 0.085 0.247 0.254 0.009 0.202 0.265 0.131 0.244 0.163 0.039 0.154 0.149
β12 -0.911 0.954 0.327 0.148 0.349 0.342 -0.998 1.016 0.197 0.097 0.207 0.195
β13 -0.963 0.996 0.322 -0.112 0.244 0.324 -1.022 1.047 0.195 0.011 0.158 0.192
γ21 0.106 0.306 0.349 0.057 0.293 0.291 0.011 0.185 0.232 -0.054 0.199 0.202
γ22 0.003 0.107 0.110 -0.028 0.076 0.093 -0.017 0.049 0.071 0.019 0.052 0.062
γ23 0.020 0.183 0.247 0.053 0.237 0.203 -0.116 0.232 0.155 0.037 0.115 0.127
β21 0.639 0.651 0.134 0.014 0.073 0.107 0.582 0.588 0.077 -0.002 0.059 0.066
β22 -1.280 1.291 0.214 -0.005 0.134 0.175 -1.205 1.214 0.123 0.008 0.090 0.115
β23 -1.256 1.273 0.206 -0.057 0.151 0.170 -1.272 1.279 0.121 0.034 0.102 0.119
Λ22 0.127 0.128 0.030 0.008 0.037 0.041 0.121 0.121 0.018 0.004 0.021 0.019
Λ43 0.910 0.912 0.066 -0.015 0.066 0.072 0.930 0.930 0.040 0.005 0.027 0.035
Λ53 0.898 0.900 0.068 -0.026 0.079 0.071 0.928 0.928 0.040 -0.002 0.030 0.035
Π11 0.194 0.251 0.145 0.023 0.125 0.122 0.176 0.197 0.084 0.025 0.055 0.063
Π12 0.163 0.237 0.140 0.000 0.120 0.121 0.176 0.200 0.084 0.033 0.066 0.065
Π13 -0.655 0.660 0.064 0.018 0.105 0.118 -0.665 0.667 0.043 0.020 0.064 0.060
ψζ 0.621 0.668 0.220 -0.120 0.187 0.156 0.746 0.759 0.141 -0.073 0.105 0.089
Φ22 0.078 0.092 0.052 -0.069 0.083 0.063 0.099 0.100 0.032 -0.059 0.066 0.037

Total - 10.727 4.106 - 3.556 3.978 - 10.505 2.591 - 2.392 2.360
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Table 3: Summary statistics of estimates of unknown parameters based on the ‘HT’
data: simulation study.

N = 300 N = 800

BAY I BAY II BAY I BAY II

Para. BIAS RMS SD BIAS RMS SD BIAS RMS SD BIAS RMS SD

γ11 -0.152 0.384 0.39 -0.261 0.204 0.207 -0.379 0.566 0.535 -0.209 0.150 0.156
γ12 0.049 0.176 0.154 0.062 0.229 0.212 0.058 0.25 0.222 0.064 0.156 0.136
γ13 0.033 0.273 0.281 -0.038 0.295 0.400 0.059 0.365 0.411 0.004 0.225 0.154
β11 -0.129 0.793 0.224 0.106 0.207 0.176 -0.127 0.856 0.292 0.057 0.158 0.163
β12 0.462 0.819 0.320 0.127 0.244 0.177 0.276 0.913 0.473 0.133 0.155 0.128
β13 0.550 0.993 0.339 0.152 0.227 0.172 0.199 0.705 0.434 0.182 0.204 0.135
γ21 -0.202 0.374 0.372 -0.248 0.288 0.201 -0.281 0.473 0.540 -0.132 0.206 0.166
γ22 -0.007 0.123 0.132 -0.015 0.150 0.138 -0.059 0.225 0.203 0.012 0.101 0.086
γ23 -0.059 0.241 0.257 -0.114 0.285 0.290 0.037 0.350 0.389 -0.046 0.187 0.173
β21 -0.077 1.076 0.201 -0.029 0.195 0.192 -0.040 0.679 0.260 -0.028 0.122 0.107
β22 0.281 1.261 0.347 0.060 0.242 0.253 0.238 1.293 0.521 0.043 0.214 0.193
β23 0.576 2.279 0.383 0.076 0.254 0.238 0.140 1.253 0.461 0.087 0.232 0.200
Λ22 0.190 0.775 0.083 0.009 0.046 0.043 -0.297 1.113 0.081 0.004 0.025 0.025
Λ43 0.078 1.368 0.103 0.018 0.071 0.075 -0.141 1.360 0.163 0.011 0.040 0.044
Λ53 0.266 0.859 0.101 0.018 0.090 0.076 0.062 0.908 0.162 0.018 0.046 0.044
Π11 -0.003 0.280 0.106 0.082 0.150 0.126 0.082 0.496 0.181 0.019 0.071 0.080
Π12 0.140 0.339 0.100 0.040 0.153 0.133 -0.082 0.399 0.176 0.038 0.092 0.079
Π13 0.397 0.536 0.103 0.059 0.170 0.134 0.296 0.666 0.154 0.032 0.079 0.078
ψζ -0.564 0.584 0.080 -0.114 0.196 0.166 -0.311 0.408 0.164 -0.074 0.136 0.115
Φ22 -0.149 0.179 0.044 -0.07 0.089 0.066 -0.167 0.226 0.068 -0.059 0.071 0.040

Total - 13.711 4.120 - 3.785 3.475 - 13.504 5.888 - 2.670 2.302
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shows that that the usual parametric fitting is more sensitive to the distributional

deviations; However, the estimate BAY II is more reasonable. The total RMS and

SD are just 3.556 and 3.978 even for small sample size N = 300. This indicates that

the semiparametric modeling is more robust against distributional deviations; (ii) For

the ‘PAR’ data, two estimates both give the reasonable results. The estimate BAY

I is more accurate than BAY II but the differences between them are slight. This

is not surprising since in this case, the parametric fitting is consistent with the true

population model; (iii) As expected, increasing the sample size improves the accuracy

of two estimates no matter whether the postulated model is specified correctly or not.

In the following, we focus on assessing the performance of Lν in selecting com-

peting models under consideration. Two set-ups for the true population model are

considered: one is the parametric model given by (S.24) (denoted by ‘PAR’) and the

other is the mixture model given by (S.25)(denoted by ‘MIX’). The sample size is

taken as N = 300. In view of the key role of latent factors in the current analysis, we

mainly concentrate upon exploring their effects on the different parts of the two-part

model. In addition, we also focus on determining whether or not the interaction is

proper for structural equation. Hence, the following competing models are considered:

M1 : Full model with (β11, β12, β13) = 0 in Part one;

M2 : Full model with (β21, β22, β23) = 0 in Part two;

M3 : Full model with (β11, β12, β13) = (β21, β12, β13) = 0 in Parts one and two;

M4 : Full model with Γ3 = 0 in (S.23).

Here, the overall model without above constraints is referred to as the ‘Full model’

(denoted by M0). Obviously, M1 to M4 represent different levels of deviations away

from the true model. Among them, M1 and M2 are that the effects of latent factors

are not imposed on the discrete and continuous parts respectively, whileM3 indicates

that the two-part model and the measurement model are separated; M4 refers to the

linear structure for causal effects of the exogenous on the endogenous factors. Note

that these models may not be nested since some elements in θ are fixed previously

for model determination or for identifying the scales of factors.
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For each data set, we calculate L0.5 across Mj(j = 0, 1, · · · , 4) under the para-

metric (denoted by ’Para’) and the semiparametric (denoted by ’Semi’) settings re-

spectively. Moreover, for comparison, we also calculate L0.1 and L1 in all scenarios.

Note that the measure L1 was originally proposed by Ibrahim and Laud (1994) in

Bayesian model comparison and not a special case of Lν . It is also noted that for the

‘PAR’ data, M0 under the parametric setting corresponds to the true model. Howev-

er, no competing models are consistent with the true population model for the ‘MIX’

data. For computation, since the unknown parameters of competing models are not

identical, the priors to these parameters should be assigned on the model-to-model

basis. To tackle such problem, we first assign the priors to the parameters involved

in the overall model, i.e., the full model without constraints. Then, the priors of

parameters under other fittings are obtained via transformations. For example, the

prior of (Γ1,Γ2) can be obtained from the distribution of (Γ1,Γ2,Γ3) via transforma-

tion (Γ1,Γ2)
T = A(Γ1,Γ2,Γ3)

T where A is the 2 × 3 permutation matrix. For each

fitting, we implement the MCMC sampling algorithm and collect 3000 observations

after the first 2000 iterations to compute L0.1, L0.5 and L1. The resulting summaries

of estimates across 100 replications are given in Tables 4 to 6.

It follows from Tables (4) and (6) that: (i) For the ‘PAR’ data, all measures give

the correct selection regardless of the parametric and the semi-parametric fittings.

They both attain the minimums at M0. Under the parametric setting, the minimum

values of L0.1, L0.5 and L1 equal to 946.400, 1031.256, 1137.362 with SD=10.396,

51.987 and 76.600 respectively, while under the semiparametric setting, the minimum

values of L0.1, L0.5 and L1 are 958.169,1132.072,1349.451 with SD=19.046, 95.231,

120.364. It also follows that at M0 all L-measures under parametric fitting are small-

er than those under semiparametric fitting. This agrees with the situations where

the data set is generated from the parametric model; (ii) For the ’MIX’ data, the

situation becomes more complex since no competing models under consideration are

consistent with the true model. We can not tell about which one outperforms the

other. But based on our simulation study, the minimums of all measures favor M0

under the semiparametric fitting. The potential reason can be attributed to the fact
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Table 4: Summary of estimates of L0.1-measure under various competing models in
the simulation study: N = 300 and G = 100.

L0.1-measure
Para Semi

Data Model Est. SD Est. SD

PAR
M0 946.400 10.396 958.169 19.046
M1 958.352 9.270 976.854 16.185
M2 1350.910 49.321 1308.453 31.160
M3 1419.084 38.128 1276.791 62.627
M4 961.574 26.662 986.390 26.663

MIX
M0 2787.770 91.107 1970.035 29.571
M1 2877.986 155.410 2076.927 42.546
M2 3986.680 73.036 4129.568 54.266
M3 4136.948 71.012 4297.136 96.848
M4 2833.276 51.333 2026.101 73.351

Table 5: Summary of estimates of L0.5-measure under various competing models in
the simulation study: N = 300 and G = 100.

L0.5-measure
Para Semi

Data Model Est. SD Est. SD

PAR
M0 1031.256 51.978 1132.072 95.231
M1 1078.415 46.351 1182.391 80.929
M2 2150.235 246.605 1623.083 155.802
M3 1640.884 190.641 1868.610 313.135
M4 1089.929 133.309 1224.291 133.316

MIX
M0 3134.104 455.537 3000.443 147.855
M1 3297.677 777.049 3113.190 212.728
M2 4426.363 365.178 4569.929 271.328
M3 4706.951 355.058 4796.253 484.240
M4 3137.173 256.667 3074.718 366.757
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Table 6: Summary of estimates of L1-measure under various competing models in the
simulation study: N = 300 and G = 100.

L1-measure
Para Semi

Data Model Est. SD Est. SD

PAR
M0 1137.326 76.600 1349.451 120.364
M1 1228.493 25.520 1439.312 106.675
M2 3149.391 135.107 3316.371 175.211
M3 1918.134 128.301 2008.382 144.641
M4 1250.373 125.601 1521.667 138.340

MIX
M0 4288.453 155.204 3567.022 161.301
M1 4408.519 252.121 3822.291 252.941
M2 5120.380 201.804 5175.967 293.981
M3 5420.149 425.501 5419.455 482.407
M4 4385.489 333.101 3517.044 374.401

that the semiparametric model is much closer to the true model when compared to

the parametric model; (iii) We also find that for ‘MIX’ data, M2 and M3 provide

poor fits when compared to other competing models. The underlying reason perhaps

is that within our framework, the latent factors have significant influences on the

continuous parts, and the absence of them will seriously distort the conclusion;

For computation, all programs are coded in C language and implemented on In-

ter(R) Core(TM), i5-6500 processor with CPU 3.20GHz on Microsoft Windows 7

operating system. In our simulation study, the convergence is fast and every 5000

iterations in blocked Gibbs sampler under the semi-parameter setting only needs

43.61 seconds for N = 800 and G = 100. It takes about six hours to complete 100

replications. Request for codes can be send to the corresponding author.
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