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S1 Proof of RCCA kernel trick lemma

Lemma (RCCA kernel trick) The original RCCA problem stated for X and Y can

be reduced to solving the RCCA problem for R and Y. The resulting canonical

correlations and variates for these two problems coincide. The canonical coefficients

for the original problem can be recovered via the linear transformation αX = V αR.

Proof. Denote V ⊥ an orthogonal complement of matrix V , i.e. the matrix V ⊥ ∈ Rp×(p−n)

such that V
∼

=
(
V, V ⊥

)
∈ Rp×p is a full-rank orthogonal matrix. Then V >V

∼

= (In, 0) .

Denote also

γ = V
∼>α =

(
V >α

(V ⊥)
>
α

)
= ( γ1γ2 ).
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Note that since there is a one-to-one correspondence betwineen α and γ, the optimiza-

tion of ρRCCA(α, β;λ1, λ2) w.r.t. to α is equivalent to optimization w.r.t. γ. Further,

the following relation is true

α>
X>Y

n
β = γ>1

R>Y

n
β

α>
(

X>X

n
+ λ1I

)
α = γ>1

R>R

n
γ1 + λ1γ

>
1 γ1 + λ1γ

>
2 γ2

Therefore, the correlation coefficient (2.4) with λ2 = 0 can be rewritten in terms of

R and Y as

ρRCCA(γ, β;λ1) =
γ>1 Σ̂RY β√

γ>1 (Σ̂RR + λ1I)γ1 + λ1‖γ2‖2
√
β>Σ̂Y Y β

.

It is easy to show that the maximum value of ρRCCA(γ, β;λ1) is attained when γ2 = 0,

so the above correlation coefficient is nothing but the RCCA correlation coefficient

computed for R and Y. Furthermore, the optimal value of αX = α can be recovered

from αR = γ1 by α = V γ1 and, since Xα = Rγ1, the canonical variates computed for

X coincide with the ones computed for R.

S2 Proof of PRCCA Kernel trick

Lemma (PRCCA Kernel Trick) The original PRCCA problem stated for X and

Y can be reduced to solving the PRCCA problem for R =
(
R1
X2

)
∈ Rn+p2 and Y.

The resulting canonical correlations and variates for these two problems coincide.

The canonical coefficients for the original problem can be recovered via the linear

transformation αX = A
(
V1 0
0 I

)
αR.
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Proof. To find the required linear transformation A we first regress X2 from X1. We

denote the matrix of regression coefficients by B = (X>2 X2)
−1X>2 X1 ∈ Rp2×p1 and set

A =
(

I 0
−B I

)
. This transformation leads to the following transformed matrix

X
∼

= XA = (X
∼

1,X
∼

2) = (X1 −X2B,X2) .

It is easy to check that matrix A is invertible and that the following relations hold

A−1 = ( I 0
B I ) and A−T

(
Ip1 0
0 0

)
A−1 =

(
Ip1 0
0 0

)
.

Thus, if we denote α
∼

= A−1α, then

α>
X>Y

n
β = α

∼>X
∼>Y

n
β

α>
(

X>X

n
+ λ1

(
Ip1 0
0 0

))
α = α

∼>

(
X
∼>X

∼

n
+ λ1

(
Ip1 0
0 0

))
α
∼

The above equations imply that the PRCCA correlation coefficient (4.2) with λ2 = 0

can be rewritten in terms of X
∼

and Y

ρPRCCA(α
∼

, β;λ1) =
α
∼>Σ̂X

∼

Y β√
α
∼>
(

Σ̂X
∼

X
∼ + λ1

(
Ip1 0
0 0

))
α
∼

√
β>Σ̂Y Y β

.

Next, let α
∼

=
(
α
∼

1
α
∼

2

)
, where α

∼

1 ∈ Rp1 and α
∼

2 ∈ Rp2 correspond to blocks X
∼

1 and

X
∼

2, respectively. Denote the orthogonal complement of V1 by V ⊥1 ∈ Rp1×(p1−n) and

consider the following transformation of the PRCCA coefficients

γ1 = V >1 α
∼

1 and γ2 =
(
V ⊥1
)>
α
∼

1
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as well as the concatenation γ =
( γ1
α
∼

2

)
. Then, by analogy one can show that

α
∼>X

∼>Y

n
β = γ>1

R>1 Y

n
β + α

∼>
2

X
∼>

2 Y

n
β = γ>

R>Y

n
β

α
∼>

(
X
∼>X

∼

n
+ λ1

(
Ip1 0
0 0

))
α
∼

= γ>1

(
R>1 R1

n
+ λ1I

)
γ1 + λ1γ

>
2 γ2 + α

∼>
2

X
∼>

2 X
∼

2

n
α
∼

2 =

= γ>
(

R>R

n
+ λ1

(
Ip1 0
0 0

))
γ + λ1γ

>
2 γ2

where the last equation holds since R>1 X
∼

2 = V >1 X
∼>

1 X
∼

2 = 0.

Again, we can ignore λ1γ
>
2 γ2 term as it is present only in the denominator of PRCCA

correlation coefficient, which, therefore, can be rewritten in terms of R and Y as

ρPRCCA(γ, β;λ1) =
γ>Σ̂RY β√

γ>
(

Σ̂RR + λ1
(
Ip1 0
0 0

))
γ
√
β>Σ̂Y Y β

,

which is exactly the PRCCA correlation coefficient computed for R and Y. The

optimal value of αX = α for the original problem can be recovered from αR = γ by

α = Aα
∼

= A
(
V1γ1
α
∼

2

)
= A

(
V1 0
0 I

)
γ.

Moreover,

Xα = X
∼

α
∼

= (R1,X
∼

2)
(
V >1 α

∼

1

α
∼

2

)
= Rγ,

so the canonical variates computed for X coincide with the ones computed for R.
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S3 Proof of General RCCA to RCCA/PRCCA lemma

Lemma (General RCCA to RCCA/PRCCA) If both KX and KY are positive definite

then, by some proper change of basis, the general RCCA problem can be reduced

to the RCCA one. Alternatively, if one of KX and KY has zero eigenvalues then

general RCCA boils down to solving the PRCCA problem with number of unpenalized

coefficients equal to the multiplicity of zero eigenvalue.

Proof. As usual, we do not penalize Y part assuming KY = 0. Consider the eigende-

composition of matrix KX , i.e. KX = UDU> with orthogonal U ∈ Rp×p and diagonal

D ∈ Rp×p. Since KX is supposed to be a positive semi-definite matrix, D has non-

negative diagonal elements. Applying transformation X
∼

= XU and α
∼

= U>α, and

using the same reasoning as in S1 and S2 we obtain

α>
X>Y

n
β = α

∼>X
∼>Y

n
β

α>
(

X>X

n
+KX

)
α = α

∼>

(
X
∼>X

∼

n
+D

)
α
∼

thus the equivalent modified correlation coefficient in the new basis is

ρ(α
∼

, β;D) =
α
∼>Σ̂X

∼

Y β√
α
∼>
(

Σ̂X
∼

X
∼ +D

)
α
∼

√
β>Σ̂Y Y β

.

Further, we decompose remaining diagonal matrix as D = SLS as follows. We have

two cases:

1. If all diagonal elements of D are positive then we put S = D
1
2 and L = I.
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2. Suppose the first p1 elements of D are positive and the rest p2 = p−p1 elements

are zero. Let D =
(
D11 0
0 0

)
, where D11 ∈ Rp1×p1 is the block containing all

positive diagonal elements of matrix D. Then we can set

S =
(
D

1
2
11 0
0 I

)
and L =

(
Ip1 0
0 0

)

Note that, unlike D, matrix S is non-singular, so the change of basis X
∼∼

= X
∼

S−1 and

α
∼∼

= Sα
∼

is well-defined and leads to the following equalities

α
∼>X

∼>Y

n
β = α

∼∼>X
∼∼>Y

n
β

α
∼>

(
X
∼>X

∼

n
+D

)
α
∼

= α
∼∼>

(
X
∼∼>X

∼∼

n
+ L

)
α
∼∼

.

Therefore, the equivalent modified correlation coefficients

ρ(α
∼∼

, β;L) =
α
∼∼>Σ̂

X
∼∼

X
∼∼α

∼∼√
α
∼∼>
(

Σ̂
X
∼∼

X
∼∼ + L

)
α
∼∼

√
β>Σ̂Y Y β

.

Is it easy to see that in the first case when L = I the above correlation coefficient coin-

cides with the RCCA correlation coefficient with λ1 = 1. Alternatively, if L =
(
Ip1 0
0 0

)
it is equal to the PRCCA correlation coefficient with λ1 = 1 and p2 unpenalized co-

efficients. Thus, we conclude that the General RCCA solution computed for X and

Y can be found by means of either RCCA or PRCCA method applied to X
∼∼

and Y .

The canonical variates stay the same regardless the basis as X
∼∼

α
∼∼

= X
∼

α
∼

= Xα. The

corresponding inverse transform for the coefficients is α = SUα
∼∼

.
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S4 Link between GRCCA and RCCA/PRCCA via the

SVD of the penalty matrix

Since GRCCA is just a special case of general RCCA, one can use previous lemma

to map the GRCCA problem to either RCCA or PRCCA and, subsequesntly, find

the canonical coefficients via the kernel trick. However, to find this transformation

it is required to do an extra step: the eigendecomposition of the kernel matrices

KX(λ1, µ1) and KY (λ2, µ2). Although this can be infeasible in high dimensions for

general penalty matrices it turns out that one can use the specific structure of the

GRCCA penalty matrix to get around this eigendecomposition.

We again assume that the regularization was imposed on the X part only (i.e. λ2 =

µ2 = 0); however, it is not difficult to derive similar results for the general case.

Recall that matrix Cm = 11>

m
∈ Rm×m has

• unit eigenvalue with corresponding eigenvector 1√
m
∈ Rm,

• zero eigenvalue with corresponding eigenspace
[

1√
m

]⊥
∈ Rm×(m−1).

Here [A]⊥ refers to the orthogonal complement of matrix A. The resulting eigende-

composition is therefore

Cm = Um( 1 0
0 0 )U>m with Um =

(
1√
m

[
1√
m

]⊥ )
.

It is easy to show the following eigendecomposition as well

λ1(I − Cm) + µ1Cm = UmDmU
>
m with Dm =

( µ1 0
0 λ1Im−1

)
.
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Thus the penalty matrix KX(λ1, µ1) can be decomposed as

KX(λ1, µ1) = UDU> with U = Up1 ⊕ . . .⊕ UpK and D = Dp1 ⊕ . . .⊕DpK .

Using the lemma from Section S3 we conclude that if λ1, µ1 > 0 then the GRCCA

problem can be solved via the RCCA approach. Alternatively, if λ1 = 0 or µ1 = 0 it

can be reduced to the PRCCA problem with n−K and K unpenalized coefficients,

respectively. Hereafter we will assume λ1 > 0, i.e. the presence of group homogeneity.

Note that due to the specific structure of KX(λ1, µ1) the eigendecomposition can be

calculated block-wise. Moreover, the resulting computational cost is equal to the

cost of computing the orthogonal complements
[

1√
p1

]⊥
, . . . ,

[
1√
pK

]⊥
, which can be

efficiently found via, for example, Helmert contrasts (c.f. contr.helmert() function

in R) and without computing any eigendecomposition.

S5 Link between GRCCA and RCCA/PRCCA via the

feature matrix extension

In Section S4 we already proposed the way to solve GRCCA problem. If the number

of groups K is rather small then penalty matrix KX(λ1, µ1) will consist of a few

large blocks. In this case it would be quite expensive to compute the orthogonal

complements and to further apply the linear transformation mapping General RCCA

to RCCA/PRCCA. It turns out that there is an alternative linear transformation

that leads to equivalent RCCA/PRCCA problem while being less expensive.

We need to establish some notation first. Suppose that matrix X is divided into blocks
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according to groups, i.e. X = (X1, . . . ,XK) . Denote the column average matrix for

group k by X̄k = Xk
1
pk

and consider an extended matrix X
∼

that consists of (scaled)

mean centered blocks and extra K columns corresponding to (scaled) group means

X
∼

(a, b) =

(√
1

a

(
X1 − X̄1

)
,

√
p1
b

X̄1, . . . ,

√
1

a

(
XK − X̄K

)
,

√
pK
b

X̄K

)
∈ Rn×(p+K).

Lemma (GRCCA to RCCA/PRCCA) If µ1 > 0 the GRCCA problem for X and Y

can be reduced to solving the RCCA problem for X
∼

(λ1, µ1) and Y. If µ1 = 0, then

GRCCA boils down to the PRCCA problem for X
∼

(λ1, 1) and Y with K unpenalized

coefficients.

Proof. Let us prove the statement for K = 1, one can easily extend the proof for

arbitrary K. For K = 1 the penalty matrix is

KX(λ1, µ1) = λ1

(
I − 11>

n

)
+ µ1

11>

n

which can be decomposed as

KX(λ1, µ1) = U
∼

D
∼

U
∼> with U

∼

=
(
I − 11>

n
1√
n

)
and D

∼

=
(
λ1In 0
0 µ1

)
.

This decomposition can be considered as an alternative to the eigendecomposition

KX = UDU> discussed in the previous section. However, unlike matrix U which was

square and orthogonal, U
∼

is a rectangular n× (n + 1) matrix with orthogonal rows,

i.e. U
∼

U
∼> = I.

Further, similar to the previous section, we do decomposition D
∼

= S
∼

L
∼

S
∼

. We again

have two cases here. If µ1 > 0 then we have
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S
∼

=
(√

λ1In 0
0

√
µ1

)
and L

∼

= I

and the following relation is true

XU
∼

S
∼−1 =

(√
1
λ1

(
X− X̄

)
,
√

n
µ1

X̄

)
= X

∼

(λ1, µ1).

If, on the contrary, µ1 = 0 then

S
∼

=
(√

λ1In 0
0 1

)
and L

∼

= ( In 0
0 0 )

which leads us to

XU
∼

S
∼−1 =

(√
1
λ1

(
X− X̄

)
,
√
nX̄
)

= X
∼

(λ1, 1).

Note that the proof in Section S3 requires matrix U
∼

to have orthogonal rows only.

Thus, following this proof, one can conclude that the original GRCCA problem is

equivalent to the RCCA problem solved for X
∼

(λ1, µ1) and Y if µ1 > 0. Alternatively,

if µ1 = 0 then GRCCA boils down to solving the PRCCA problem for X
∼

(λ1, 1) and

Y, and one unpenalized coefficient. Again, such change of basis does not influence

the canonical variates, whereas the canonical coefficients are transformed according

to α = U
∼

S
∼−1α

∼

.

Note that the corresponding data transformation boils down to computing the group

means and adjusting the feature matrix by group means. Although this approach can

be considered as convenient alternative to the one suggested in Section S4, there is a

trade-off. On the one hand, we reduce the cost by getting around the eigendecompo-

sition (computing the orthogonal complements). On the other hand, we increase the
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feature matrix dimension from p to p+K, which can be quite inefficient for large K.

S6 Neuroimaging analysis

Details about the protocol and measures collected by HCP-DES are outlined in Tozzi

et al. (2020). Here, only the details relevant to this study are discussed.

6.1 Neuroimaging acquisition details

Images were acquired at the Stanford Center for Cognitive and Neurobiological Imag-

ing (CNI) on a GE Discovery MR750 3 T scanner using a Nova Medical 32-channel

head coil. Two spin-echo fieldmaps were acquired at the beginning of each session,

one with a posterior-anterior phase encoding direction, the other with an anterior-

posterior direction. All fMRI scans were conducted using a blipped-CAIPI simulta-

neous multislice “multiband” acquisition (Setsompop et al., 2012).

1. Spin-echo fieldmaps: TE = 55.5 ms, TR = 6 s, FA = 90◦, acquisition time =

18 s, field of view = 220.8 × 220.8 mm, 3D matrix size = 92 × 92 × 60, slice

orientation = axial, angulation to anterior commissure - posterior commissure

(AC-PC) line, phase encoding = AP and PA, receiver bandwidth = 250 kHz,

readout duration = 49.14 ms, echo spacing = 0.54 ms, voxel size = 2.4 mm

isotropic.

2. Single-band calibration: TE = 30 ms, TR = 4.4 s, FA = 90◦, acquisition

time = 13 s, field of view = 220.8 × 220.8 mm, 3D matrix size = 92 × 92 × 60,

slice orientation = axial, angulation to AC-PC line, phase encoding = PA,
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receiver bandwidth = 250 kHz, readout duration = 49.14 ms, echo spacing

= 0.54 ms, number of volumes = 4, voxel size = 2.4 mm isotropic.

3. Multiband fMRI: TE = 30 ms, TR = 0.71 s, FA = 54◦, acquisition time = 3:44

(Gambling task), field of view = 220.8 × 220.8 mm, 3D matrix size = 92 × 92

× 60, slice orientation = axial, angulation to AC-PC line, phase encoding =

PA, receiver bandwidth = 250 kHz, readout duration = 49.14 ms, echo spacing

= 0.54 ms, number of volumes for Gambling task = 316, multiband factor = 6,

calibration volumes = 2, voxel size = 2.4 mm isotropic.

4. T1-weighted: TE = 3.548 ms, MPRAGE TR = 2.84 s, FA = 8◦, acquisition

time = 8:33, field of view = 256 × 256 mm, 3D matrix size = 320 × 320 × 230,

slice orientation = sagittal, angulation to AC-PC line, receiver bandwidth =

31.25 kHz, fat suppression = no, motion correction = PROMO, voxel size =

0.8 mm isotropic.

5. T2-weighted: TE = 74.4 ms, TR = 2.5 s, FA = 90◦, acquisition time = 5:42,

field of view = 240 × 240 mm, 3D matrix size = 320 × 320 × 216, slice orien-

tation = sagittal, angulation to AC-PC line, receiver bandwidth = 125 kHz, fat

suppression = no, motion correction = PROMO, voxel size = 0.8 mm isotropic.

6.2 Gambling task paradigm

The HCP-DES adopts a version of the HCP Gambling task modified to allow com-

parison of small and large gain and loss outcomes (Somerville et al., 2018; Tozzi et al.,

2020). A question mark is displayed on the screen and the participant must guess

whether a number is greater than or less than five (and indicate their answer via but-
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ton presses). If the participant identifies correctly, they win money, and if they guess

incorrectly, they lose money. At the end of the task, 5 trials are randomly selected

and summed together to determine the participant’s payment.

6.3 Preprocessing

Raw image files were converted to BIDS format and preprocessed using fMRIPrep

(Esteban et al., 2019). Briefly, brain surfaces were reconstructed using recon-all

(FreeSurfer 6.0.1, Dale et al. (1999)). Susceptibility distortion for fMRI data were

corrected using the two echo-planar imaging (EPI) references with opposing phase-

encoding directions (Cox and Hyde, 1997). Surface data was registered to fsaverage

space and subcortical data to MNI space. These were then merged to grayordinate

CIFTI files. Automated labeling of noise components following ICA decomposition

was performed using AROMA (Pruim et al., 2015). As final output, we down-sampled

the preprocessed grey-ordinate functional CIFTI files to 32k FSLR space (Glasser

et al., 2013). Then, we applied a 4 mm full-width half-maximum smoothing con-

strained to the grey matter boundaries. For the quantification of brain responses

to the task, the following conditions were convolved with a canonical hemodynamic

response function as implemented in FSL (Jenkinson et al., 2012): high win, low

win, high loss, low loss, high cue, low cue. The regressors obtained were entered in a

design matrix together with the confound regressors generated by AROMA. A GLM

analysis was then performed using the HCP pipelines (Glasser et al., 2013) and the

contrast win > loss was estimated for each participant (coefficients of high and low

wins and losses were averaged). The z-scores corresponding to this contrast in each

greyordinate were the features entered in the CCA analyses.
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