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Software

Software in the form of R code, together with a sample input data set and complete

documentation will be available at https://github.com/spatialstatisticsupna/

Confounding_article.

A Supplementary Material A

This section shows that placing constraints is equivalent to an oblique projection.

In particular, we focus on the situation studied in the paper where constraints on

Gaussian variables (the random effects) are specified by a precision matrix without

constraints on the null space. In the paper, the precision matrices of the random

effects are rank deficient and usually sum-to-zero constraints corresponding to the

null space are required to fit the model. However, as we are making the random effects

orthogonal to the fixed effects (intercept included), the usual sum-to-zero constraints

are not required and must be replaced with weighted sum-to-zero constraints.

Theorem 1. Let Y be a random variable of length n with density

pY (y) ∝ exp

[
−1

2
y

′
Qy

]
, (A.1)

with Q not necessarily of full rank. Let A be a subspace of Rn such that A∩K(Q) =

1
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{0}, and K(Q) stands for the null space (kernel) of Q. Let A and B be matrices

with rows that form orthonormal bases for A and its orthogonal complement A⊥,

respectively. Finally, let

PA = A
′
(AQA

′
)−1AQ. (A.2)

Then the following distributions are equal:

1. [Y |BY = 0];

2. [Y |Y ∈ A];

3. [PAY ];

4. N [0,A
′
(AQA

′
)−1A].

Proof. Let M = (A
′
B

′
)
′

be orthogonal where A and B are (n − c) × n and c × n

matrices, and define z = My. Then

pZ(z) = pY (M−1z)|M−1|,

∝ exp

[
−1

2
z

′
(M−1)

′
QM−1z

]
,

= exp

[
−1

2
z

′
(MQM

′
)z

]
.

(A.3)

Letting (
K L

)R 0

0 0


K

′

L
′


be the spectral decomposition of Q, where K and L are matrices with eigenvectors

having non-null and null eigenvalues respectively, and R is a diagonal matrix with
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the non-null and positive eigenvalues, note that

MQM
′
=

AQA
′

AQB
′

BQA
′

BQB
′


=

A

B

(K L

)R 0

0 0


K

′

L
′

(A′
B

′

)
.

Then, AQA
′

= AKRK
′
A

′
. Let x 6= 0. Since A is of full row rank, A

′
x 6= 0, and

K
′
A

′
x 6= 0 as long as A

′
x 6∈ R(K

′
)⊥ = R(L

′
) = K(Q), where R() indicate the

row space of a matrix. Since A
′
x ∈ R(A), and R(A) ∩ K(Q) = {0}, K′

A
′
x 6= 0.

Since R is trivially positive definite, x
′
AKRK

′
A

′
x > 0, thus AQA

′
= AKRK

′
A

′

is positive definite and therefore invertible. We have

p(z[1,n−c]|By = 0) = p(z[1,n−c]|z[n−c+1,n] = 0),

∝ exp

[
−1

2
z

′

[1,n−c]AQA
′
z[1,n−c]

]
,

(A.4)

where z[a,b] = (za, . . . , zb)
′
. Then, since AQA

′
is invertible,

[Y |BY = 0] ∼ N [0,V] , V =

(
A

′
B

′

)(AQA
′
)−1 0

0
′

0


A

B

 = A
′
(AQA

′
)−1A.

(A.5)

When the Gaussian random variable Y is specified via the precision matrix Q, K(Q)

contains the unidentified degrees of freedom in the sense that fY (y + b) = fY (y) for

all b ∈ K(Q). Note that K(PA) = K(Q), so PA(y + b) = PAy for all b ∈ K(Q), so

PAY is identified because changing Y adding b does not change PAY . Thus, when
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computing Var[PAY ], we may restrict Y to K(Q)⊥ so that Var[Y ] = Q−. Then,

Var[PAY ] =
[
A

′
(AQA

′
)−1AQ

]
Q−

[
A

′
(AQA

′
)−1AQ

]′
,

= A
′
(AQA

′
)−1AQQ−QA

′
(AQA

′
)−1A,

= A
′
(AQA

′
)−1AQA

′
(AQA

′
)−1A,

= A
′
(AQA

′
)−1A.

Notes:

In the situation described in the paper, we need Aξ and Bξ, Aγ and Bγ, and Aδ

and Bδ. The B matrices (the constraints matrices) are given by Equation (3.5), and

each A matrix may be constructed by taking its rows to be the eigenvectors of the

orthogonal projection matrix In−B
′
(BB

′
)−1B whose eigenvalues are 1 (equivalently,

non-zero). Since the projection is orthogonal, its matrix is symmetric and admits a

set of orthonormal eigenvectors forming a basis for Rn, and its null space R(B) is

orthogonal to its row space, the eigenvectors whose eigenvalues are non-zero. The

condition R(A) ∩ K(Q) = {0} ensures that the constraint BY = 0 is sufficient to

identify Y .
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Expressions for constraint matrices Bξ, Bγ, and Bδ

Bξ = X
′

∗Ŵ(1T ⊗ IS) =



ŵ1. . . . ŵS.

(ŵx1)1. · · · (ŵx1)S.
...

. . .
...

(ŵxp)1. · · · (ŵxp)S.


,

Bγ = X
′

∗Ŵ(IT ⊗ 1S) =



ŵ.1 . . . ŵ.T

(ŵx1).1 · · · (ŵx1).T
...

. . .
...

(ŵxp).1 · · · (ŵxp).T


,

Bδ = [(1T ⊗ IS) : (IT ⊗ 1S) : X]
′
Ŵ =



ŵ11 · · · 0 · · · ŵ1T · · · 0

...
. . .

... · · ·
...

. . .
...

0 · · · ŵS1 · · · 0 · · · ŵST

ŵ11 · · · ŵS1 · · · 0 · · · 0

...
. . .

... · · ·
...

. . .
...

0 · · · 0 · · · ŵ1T · · · ŵST

x111ŵ11 · · · x1S1ŵS1 · · · x11T ŵ1T · · · x1ST ŵST
...

. . .
... · · ·

...
. . .

...

xp11ŵ11 · · · xpS1ŵS1 · · · xp1T ŵ1T · · · xpST ŵST


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Figure B.1: Boxplots of correlations between the covariates and the spatial eigenvector

Uξ69 for each year (left) and correlations between the covariates and the temporal

eigenvector Uγ13 for each area (right).

Figure B.1 displays boxplots of correlations between the covariates and the spatial

eigenvector Uξ69 for each year (left picture), and boxplots of correlations between the

covariates and the temporal eigenvector Uγ13 for each area (right picture). Sex ratio,

per capita income and murder rate exhibit the highest spatial correlations while the

other covariates show moderate or low correlations. Regarding temporal correlations,

the population-based variables (sex ratio, population density, and female literacy rate)

and per capita income show the highest correlations. Population-based covariates

exhibit temporal correlations close to 1 or −1 because they are only available at

census years and have been linearly interpolated for the other years, and the temporal

eigenvector Uγ13 is nearly a straight line.
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Table B.1: Posterior estimates of the hyperparameters obtained using uniform priors

on the positive real line for the standard deviations (INLA), and point estimates

obtained with PQL

INLA (simplified Laplace) PQL (tol=1e-5)

Model Mean SD q0.025 q0.975 Estimate SE q0.025 q0.975

σ2
s ST2 0.2072 0.0420 0.1391 0.3021 0.1961 0.0370 0.1236 0.2685

ST3 0.2072 0.0420 0.1391 0.3021 0.1961 0.0370 0.1237 0.2686

ST4 0.2349 0.0466 0.1595 0.3403 0.2218 0.0422 0.1391 0.3044

σ2
t ST2 0.0174 0.0086 0.0065 0.0390 0.0131 0.0056 0.0022 0.0241

ST3 0.0174 0.0086 0.0065 0.0390 0.0131 0.0056 0.0022 0.0241

ST4 0.0164 0.0135 0.0036 0.0519 0.0093 0.0057 0.0000 0.0204

σ2
st ST2 0.0212 0.0038 0.0147 0.0294 0.0207 0.0035 0.0139 0.0275

ST3 0.0212 0.0038 0.0147 0.0294 0.0207 0.0035 0.0139 0.0275

ST4 0.0222 0.0039 0.0155 0.0306 0.0213 0.0036 0.0142 0.0283

Table B.1 displays posterior estimates of the standard deviations of the random effects

obtained with INLA, and point estimates of the standard deviations obtained with

PQL. The estimates are rather similar in all models and in general, INLA estimates

do not differ much from those obtained with PQL. Here uniform priors on the real

line have been used for the standard deviations, but similar results were obtained

with logGamma(1,0.00005) priors on the log-precisions.

Figure B.2 shows scatter plots of the estimated relative risks from Models ST2, ST3,

and ST4 fitted with INLA (posterior means, top row) and PQL (point estimates,

bottom row). For both fitting techniques, Model ST2 (spatio-temporal model with

no correction for confounding) shows the same fit as Model ST3 (accounting for con-
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Figure B.2: Scatter plots of relative risk estimates obtained from Models ST2, ST3,

and ST4. Top row: posterior means estimated with INLA; bottom row: point esti-

mates estimated with PQL.

founding using restricted regression). However, comparing Models ST2 and ST3 with

Model ST4 (accounting for confounding using constraints) shows notable differences:

the two methods that deal with confounding give different fits.

Figure B.3 shows the posterior spatial patterns (top row), the posterior temporal

patterns (middle row) obtained from Models ST2, ST3, and ST4 fitted with INLA

(see Adin et al., 2017), and posterior spatio-temporal patterns for three districts,

Agra, Balrampur, and Gautam Buddha Nagar (bottom row). While the posterior

spatial patterns are quite similar for all models (top row), the posterior temporal

and spatio-temporal patterns differ. The temporal patterns obtained with Models

ST2 and ST3 are identical, while the temporal pattern obtained with Model ST4
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Figure B.3: Maps of posterior spatial patterns (top row) and posterior temporal

patterns (middle row) obtained with models ST2, ST3, and ST4. Red lines (middle

row) are the global standardized mortality ratios. Posterior spatio-temporal patterns

(bottom row) obtained with Models ST3 and ST4 are shown for three districts (Agra,

Balrampur and Gautam Buddha Nagar). Results are from the INLA fit.

is clearly different and does not track the global standardized mortality ratios (red

line). Regarding posterior spatio-temporal patterns (space-time interactions), some
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Figure B.4: Final risk estimates obtained with models ST3 and ST4 and INLA in

three districts, Agra, Balrampur, and Gautam Buddha Nagar. Black lines and grey

credible intervals correspond to Model ST3, blue lines and credible intervals to Model

ST4. Red lines represent the crude standardized mortality ratios.

areas present mild differences between Models ST3 and ST4 (e.g., Agra) and others

exhibit negligible differences (Balrampur), but some districts show striking differences

(Gautam Buddha Nagar). In general, most districts have modest differences in the

spatio-temporal component (not shown).

Figure B.4 displays the INLA relative risk estimates (posterior means) obtained with

models ST3 and ST4 in the same three districts shown in Figure B.3, Agra, Balram-

pur, and Gautam Buddha Nagar. Black lines and grey credible intervals are from

Model ST3, while blue lines and blue credible intervals are from Model ST4. Stan-

dardized mortality ratios are shown in red. The differences in risks between Models

ST3 and ST4 in Agra and Gautam Buddha Nagar are due to both the temporal

and spatio-temporal components, while the differences in Balrampur are due to the

temporal component. Given that the temporal pattern is common to all districts, it

seems striking that the differences in risk in Balrampur are very small in comparison

to Agra and Gautam Buddha Nagar. The reason is that the risk estimate is the
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product of the spatial, temporal, and spatio-temporal components. In Balrampur,

the spatial component is small (between 0.25 and 0.50) whereas in Agra and Gautam

Buddha Nagar the spatial relative risk is greater than one. Consequently, differences

in risk are softened in Balarampur and accentuated in Agra and Gautam Buddha

Nagar.
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