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A Implementation of distreg.vis

Understanding the inner workings of distreg.vis is best done by starting at the two most

important functions, plot_dist() and plot_moments(). Each function is a direct answer

to the two central questions which led to the creation of distreg.vis:

1. What exactly does my predicted distribution look like, based on selected covariate

combinations?

2. How do the expected moments of my target distribution vary over the range of a

specific variable of interest?

The remaining functions of the distreg.vis solely feature a supportive character easing

the overall computative process. Here, we start with plot_dist():

A.1 Visualization of distribution predictions

To accurately display the predicted distribution of a covariate combination, the first step

is to gather the appropriate distributional parameters from which to build the probability

density (pdf) or cumulative distribution function (cdf). These parameters are obtained by

choosing certain covariate combinations and then using the estimated model for prediction.

These covariate combinations are usually user-picked, but distreg.vis offers a few tools

to ease the choosing process, as shown below.

A.1.1 Choosing covariate combinations

This Section introduces tools to make using both plot_moments() and plot_dist() easier

by creating datasets to predict with in the correct format. To quickly obtain a data.frame

object with all variables set to their mean, one can use model_data() to obtain the covari-

ates with which the model was estimated, and then set_mean() to calculate the average

values of each covariate. Both functions and their arguments are repeatedly used in and as

such are part of the main functions in distreg.vis, plot_dist() and plot_moments().

The usage of model_data() is as follows:
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model_data(model , dep = FALSE , varname = NULL)

where model represents one of distreg.vis’ supported model classes. It returns a

data.frame object containing the explanatory variables, except when dep = TRUE (returns

vector of dependent variable) or when varname is specified in character form (returns a

vector of a specific named explanatory variable).

After obtaining the explanatory variables, reducing its dimensions to the mean is

achieved with set_mean(), the usage of which is as follows:

set_mean(input , vary_by = NULL)

With the argument input, a data.frame object is specified, which can conveniently be

the output of a model_data() call. Then, average values are calculated of each column

in input. For categorical variables, the first level of the underlying factor class is taken,

which in model estimation typically corresponds to the reference category.

Using the argument vary_by(), the user can specify an explanatory variable in charac-

ter form, over which the returned data.frame is “varied”. This means that the returned

object consists of the same number of columns as before, but with multiple rows and vary-

ing values in the covariate of choice. If this variable is categorical, then the varying values

consist of the possible categories. In numeric cases, a sequence of five values, ranging from

the 2.5% to the 97.5% quantile is created. All other variables stay constant at their mean

or reference category. This argument is very useful for a display of marginal distributions,

based on the resulting data.frame object.

To show an example of the ease of use of the aforementioned functions, we consider

the same model that was fit in Section 2 of the main paper. To retrieve the explanatory

variables of that model, and set them to the mean with varying values in the categorical

covariate education, we can run the following code:

R> df <- set_mean(input = model_data(wage_model), vary_by = "education")

R> row.names(df) <- levels(Wage$education)

R> df

ethnicity year education age

1. < HS Grad 1. White 2006 1. < HS Grad 42
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2. HS Grad 1. White 2006 2. HS Grad 42

3. Some College 1. White 2006 3. Some College 42

4. College Grad 1. White 2006 4. College Grad 42

5. Advanced Degree 1. White 2006 5. Advanced Degree 42

From the results of the above code chunk, we can now quickly make parameter pre-

dictions and obtain either graphs with the marginal distribution (plot_moments()), or

marginal influence plots plot_moments(). Further defining the row.names of the data.frame

to be the different education levels ensures improved legends in further graphs.

A.1.2 Parameter predictions

Predicted parameters of the target distribution are usually outputs of predict.object()

functions for each regression model class. This is no different in the case of bamlss, gamlss

or betareg, for which those functions also exist. Unfortunately, the usage of all three

predict functions is not consistent over its respective packages, and sometimes not even

within the package throughout parameters of different target distributions.

For example, predict.bamlss() returns a vector if the predicted distribution only

consists of one parameter, a list of vectors if it consists of more than one, and a list of

matrices if the MCMC samples of the predicted parameters are desired. To ensure unity

and guarantee type consistency over the supported packages outcome classes, preds() was

written. Without worrying about class-specific function arguments, it offers a consistent

way of obtaining predictions based on specific covariate combinations. Its usage is as

follows:

preds(model , newdata = NULL , what = "mean", vary_by = NULL)

where model represents a fitted gamlss, bamlss or betareg object and newdata a

data.frame with different covariate combinations in each row. If newdata is omitted

(= NULL), then the mean of the explanatory variables are used for prediction, utilizing

set_mean(). This can be used in combination with the argument vary_by, which then

creates a newdata that consists of varying values in one specific variable (see Chapter A.1.1

for details).
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The argument what specifies whether the predicted parameters should be directly calcu-

lated (what = "mean"), or the output should consist of samples of the predicted parameter

(what = "samples"). This option is only available for the bamlss model class, and is nec-

essary for exact estimates of the predicted moments or other measures derived from the

parameters and for the construction of credible intervals at a later stage (e.g., for plotting).

Obtaining samples for the predicted parameters of our target distribution, based on

the different education levels defined in df can now be done as follows, using the option

what = "samples":

R> pp_samples <- preds(model = wage_model ,

+ newdata = df,

+ what = "samples")

R> lapply(pp_samples , head , 2)

$ ‘1. < HS Grad ‘

mu sigma

[1,] 4.506987 0.2850489

[2,] 4.485811 0.2498074

$ ‘2. HS Grad ‘

mu sigma

[1,] 4.630472 0.2872791

[2,] 4.592440 0.2883318

$ ‘3. Some College ‘

mu sigma

[1,] 4.759729 0.2878243

[2,] 4.712548 0.2792889

$ ‘4. College Grad ‘

mu sigma

[1,] 4.864325 0.3270728

[2,] 4.816144 0.3139536
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$ ‘5. Advanced Degree ‘

mu sigma

[1,] 4.999823 0.3329738

[2,] 4.991542 0.3368283

In this case, the object pp_samples was produced as a list with as many elements

as preselected covariate combinations. Each element is a matrix containing samples in

rows (by default bamlss keeps n = 1001, of which the first two rows are shown above)

for all distributional parameters (in this case two: µ, σ). The two plotting functions of

distreg.vis automatically recognize the object and can extract information from both

Maximum-Likelihood estimates (gamlss or betareg) or MCMC samples (bamlss). If

the predicted parameters are provided in the form of samples (as a list object in R),

plot_moments() is able to display credible intervals above and below the predicted mo-

ments.

A.1.3 Visualize predicted distributions

To get a feel for the predicted distributions and their differences, it is best to visualize them.

In combination with the obtained parameters from preds(), the function plot_dist()

finds the necessary distribution functions (probability density function or cumulative dis-

tribution function) from the respective packages and then displays them graphically.

Creating the distributional graph is a five step process, beginning with the right input,

the arguments. The usage of plot_dist() is as follows:

plot_dist(model , pred_params = NULL , palette = "viridis",

type = "pdf", rug = FALSE , vary_by = NULL , newdata = NULL)

As before, model depicts the fitted distributional regression model. The argument

pred_params takes the previously predicted parameters of the fitted distribution. Options

palette and rug yield aesthetic changes; the first one is able to process any character string

that resembles either "default", which results in displaying the default color palette of

ggplot2 (Wickham, 2016), "viridis" for a colorblind-friendly palette from the viridis

package (Garnier, 2017) or a palette from the RColorBrewer package (Neuwirth, 2014).

If the user wishes to leave out the step of specifying predicted parameters with pred_params,
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the argument newdata can be provided instead. This argument will then be passed onto

preds, which internally computes the predicted parameters used for plotting the distribu-

tion functions. If neither pred_params nor newdata are specified, then plot_dist() uses

the mean values of the explanatory variables with set_mean() to predict the parameters

used for plotting. The argument vary_by is also passed on to set_mean() which, if spec-

ified, leads to plot_dist() displaying marginal distributions over the range or categories

of a specified variable (see Section A.1.1 for details).

The last argument rug, as the name implies, adds a “rug graph” below the density/cu-

mulative distribution graphs, which shows small vertical strips indicating where actual

observations of the dependent variable lie. Using the argument type, one can switch be-

tween probability density functions ("pdf") or cumulative distribution functions ("cdf").

After plot_dist() has received all necessary arguments, it executes validity checks to

ensure the argument’s correct specification. This includes controlling for the correct model

class, checking whether the distributional family can be used safely and whether cdf or pdf

functions for the modeled distribution are present and ready to be graphically displayed. If

this is the case, the internal fam_fun_getter() is used to create a list with two functions

pointing to the correct pdf and cdf functions for the distributions from either the gamlss,

bamlss or betareg namespace.

To graphically display the previously obtained functions, the only remaining unanswered

question is one about the limits: What should be the axis’ ranges? To accomodate this

task, the internal function limits() was created. The default option in distreg.vis for

the x-axis on both cdf and pdf function displays are the 0.1% and the 99.9% quantiles of

the predicted distribution. If multiple distributions are displayed, always the minimum and

maximum values of all calculated quantiles are used.

Both the validity checks and the limits() function make use of specific information

about every available distribution in the supported distributional regression packages. This

information is stored in a data.frame object called dists with the following form:

R> str(dists)
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’data.frame ’: 125 obs. of 8 variables:

$ dist_name : chr "BB" "BCCG" "BCCGo" "BCPE" ...

$ class : chr "gamlss" "gamlss" "gamlss" "gamlss" ...

$ implemented: logi FALSE TRUE TRUE TRUE TRUE TRUE ...

$ moment_funs: logi FALSE FALSE FALSE FALSE FALSE FALSE ...

$ type_limits: chr "both_limits" "one_limit" "one_limit" "one_limit" ...

$ l_limit : int 0 0 0 0 0 0 0 0 0 0 ...

$ u_limit : int 10 NA NA NA NA NA NA 1 1 1 ...

$ type : chr "Discrete" "Continuous" "Continuous" "Continuous" ...

The dists object contains one row for each distribution, and columns with the following

content:

• dist_name: Name of the distribution.

• class: Either "bamlss", "gamlss" or "betareg" detailing from which package the

target distribution comes from.

• implemented: Is this distribution generally usable for plot_dist(), and was this

usage already tested?

• moment_funs: Are functions implemented with which to calculate the moments

of the distribution, given the parameters? This column is notably relevant for

plot_moments(), in which the predicted moments are displayed.

• type_limits: Details the range the values from the distribution can have. Can be

"both_limits", "one_limit", "no_limit" and "cat_limit" (for categorical distri-

butions).

• l_limit, u_limit: Integers detailing where the limits of the distributions lie.

• type: Character string for the type of distribution. Can be ”Discrete”, ”Continuous”,

”Mixed” and ”Categorical”.

Following a successful calculation of the plot limits, the graph itself can be created.

Internally, distreg.vis divides between continuous, discrete and categorical distributions.

8



0.0

0.2

0.4

0.6

one two three four
y

f(
y)

Predictions

214

394

486

492

64

a)

0

1

2

3

4

0.2 0.4 0.6 0.8
y

f(
y)

Predictions

13

265

271

297

75

b)

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8
y

F
(y

)

Predictions

13

265

271

297

75

c)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
y

f(
y)

Predictions

209

232

302

340

72

d)

0.00

0.25

0.50

0.75

1.00

0 5 10 15
y

F
(y

)

Predictions

209

232

302

340

72

e)

Figure A1: Plot outcome possibilities in plot_dist() displayed with five different predic-
tions in five examples: a) a multinomial probability density function, b) an expected pdf
with the respective cdf of a Beta distribution shown in c), and the expected pdf and cdf
pair of a geometric distribution in d) and e), respectively.

Continuous distributions are displayed as filled line plots, while discrete and categorical

distributions take bar graph shapes.

For plotting, distreg.vis relies on the ggplot2 package (Wickham, 2016). After an

empty graph is constructed, the previously obtained cdf or pdf functions are evaluated for

each predicted parameter combination and all values inside the calculated plot limits.
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Figure A1 lays out examples of the five different shapes of plot_dist(): The probability

density function (pdf) of continuous, discrete and categorical distributions, as well as the

cumulative distribution function (cdf) of continuous and discrete distributions. In each of

those cases (subplots a) to e)), a dataset was simulated of an appropriately chosen target

distribution, which was then used for model estimation. Based on these models and five

arbitrary covariate combinations from the datasets, the predicted pdf’s and cdf’s were

computed and displayed.

A.2 Visualization of effect influence

The target of the second main function, plot_moments(), is to display the influence of a

selected effect on the predicted moments of the modeled distribution. The motivation for

computing influences on the moments of a distribution is its interpretability: In most cases,

the parameters of a distribution do not equate the moments and as such are only indirectly

location, scale or shape properties, making the computed effects hard to understand.

When plot_moments() is called, the provided function arguments are evaluated first.

They are specified as follows:

plot_moments(model , int_var , pred_data = NULL , rug = FALSE ,

samples = FALSE , uncertainty = FALSE , ex_fun = NULL ,

palette = "viridis", vary_by = NULL)

Here, model represents the fitted distributional regression object (as before). The argu-

ment int_var stands for “variable of interest” and consists of a character string with the

name of the explanatory variable, whose effect influence should be plotted. This covari-

ate can be either categorical or continuous. The argument pred_data is specified using a

data.frame object that consists of the values that the remaining variables should attain,

while int_var varies. If this data.frame has multiple rows, the influence plot is re-drawn

for each different covariate combination. This is a neat way to, for example, visualize

interaction effects between two variables.

If pred_data is not specified (left at NULL), plot_moments() will utilize set_mean()

in combination with model_data() to use mean values of the explanatory variables for
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prediction. If the argument vary_by is specified, it will be passed onto set_mean() for

creating a data.frame object in which one variable has varying values, while all other stay

at their mean (see Chapter A.1.1 for details).

Using the arguments samples and uncertainty, one can exploit the advantages that

Bayesian regression models have to offer. With samples = TRUE the predicted moments

are computed by transforming the samples of the predicted parameters to the moments,

and then calculating the mean of the samples over the range of int_var. If the argument

samples was chosen to be FALSE (the default case), then the mean of the samples is taken

before they are transformed to the predicted moments.

This distinction is especially relevant in nonlinear parameter-to-moment transforma-

tions, where taking the average before transforming the samples yields inaccurate results.

Setting samples = FALSE should therefore only be used in situations where one is inter-

ested in quick and rough effect influences. For complete accuracy setting samples = TRUE

is preferred.

With uncertainty, the user can construct credible intervals for the influence plots. If

this argument is set to TRUE, then empirical 2.5% and 97.5% quantiles are computed for

the predicted moments of the entire range of our variable of interest, int_var. Using this

method, it is possible to detect complex significant differences between the moments of a

categorical variable, for example. Both samples and uncertainty can only be set to TRUE

for bamlss model classes.

The argument ex_fun takes a character string with the name of an R function that

currently exists in the user’s global environment. This function can be any function which

takes the predicted parameters as input and yields a single number as an output. For

situations where metrics depend on the entire predicted distribution of the target variable,

like the Gini coefficient (Lerman and Yitzhaki, 1984), this is especially useful. Combined

with the sample-based approach of bamlss, we can even obtain uncertainty measures for

those user-defined metrics.

After typical argument validity checks, a sequence is created that covers the entire range

of the variable of interest, int_var. This sequence is then combined with pred_data to
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obtain a data.frame object where the main variable varies but the previously specified

other variables stay constant. The newly created data.frame is further passed to the

preds() function, which computes predicted parameters for every row.

Depending on whether samples was set to TRUE or not, the output of the called preds()

function is now either a data.frame with the same dimensions as pred_data and with the

parameters replaced by the predicted moments, or a list with one element for each user-

specified covariate combination consisting of the parameter samples which were transformed

to the expected moments of the target distribution. Afterwards, the mean of all moment

samples at each point of int_var’s range is calculated, resulting in all necessary values

to create the resulting influence graph. If uncertainty is also TRUE, the upper and lower

limits of the credible intervals are constructed.

Obtaining the predicted moments and possibly lower and upper bounds of the credible

intervals means that the resulting graph can then be created. To illustrate the potential of

plot_moments(), we will again focus on the introductory example, where the question of

interest is the relationship between annual income and different socioeconomic variables.

Calling plot_moments() for both a numeric (age) and a categorical variable (ethnicity)

can be done as follows:

R> gini <- function(par) {

+ 2 * pnorm ((par[["sigma"]] / 2) * sqrt (2)) - 1

+ }

R> plot_moments(

+ wage_model ,

+ int_var = "age",

+ pred_data = df_new ,

+ samples = TRUE ,

+ uncertainty = TRUE ,

+ ex_fun = "gini",

+ rug = TRUE

+ )

R> plot_moments(

+ wage_model ,

+ int_var = "ethnicity",
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+ pred_data = df_new ,

+ samples = TRUE ,

+ uncertainty = TRUE ,

+ ex_fun = "gini"

+ )

Figure A2 shows the outcome of the above code, which represents two of the three dif-

ferent graph outcomes that plot_moments() can have. Part a) focuses on the relationship

between the age of observed individuals, a numeric variable, and the first two expected

moments of the modeled income distribution (leftmost and middle graph). The different

lines represent multiple education levels, which were specified in the data.frame object

called df (p. 3). For a less cluttered visualization, this portrayal of the age influence

features only three different education levels resulting in three different lines.

Even though the first two expected moments are already informative, one might be

interested in other specific measures being dependent on the parameters of a distribution.

This could include higher-order moments like skewness or more specific measures, like

income inequality. Previously, finding out how this measure varies over a variable would

involve many lines of code. With distreg.vis, specifying an external function is easy.

The very right graph of part a) portrays the external function (gini) that was specified

with the argument ex_fun. It represents the Gini coefficient of the distribution, which is

a measure of inequality of a distribution (Lerman and Yitzhaki, 1984). Similarly to the

expected moments, we also construct credible intervals around the self-specified function

gini, as shown in Figure A2.

Below and above the lines of the varying moment and external function levels lie shaded

areas, which represent the uncertainty of the influence. These are credible intervals, i.e.

empirical 2.5% and 97.5% quantiles of the obtained MCMC samples transformed to be

expected moments. The advantages of having uncertainty areas are numerous, but include

the direct visibility of significant differences between two different categories chosen with

the data.frame object called pred_data. For example, the left plot of part a) shows a

significant difference in the expected income for all three chosen education levels, because

the credible intervals do not overlap in almost the entire range of age.
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Figure A2: Plot outcome possibilities in plot_moments(): Part a) shows the expected mo-
ments (Expected_Value and Variance) and a user-specified function (gini) over the range
of a continuous covariate, including its credible intervals. Part b) displays the expected
moments and the external function over the range of a categorical variable, ethnicity.

The bar graphs of Figure A2 part b) appear if a categorical variable is chosen as the

variable of interest int_var. In this case it was chosen to be the ethnicity of individuals.

The x-axis portrays all different categories that the variable can attain. Then, the height

of each bar features the expected mean or variance of the predicted distribution when

int_var reaches the specific category. The different bars in each category represent again

the covariate combinations specified in the pred_data argument. Due to the pred_data

covariate values only varying in the education levels of the individuals, one could under-

stand part b) of Figure A2 as the predicted expected value, variance and external function

of the modeled distribution, broken down to each combination of both education and

ethnicity.
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Figure B3: Layout of distreg.vis after starting the application.

Similar to the continuous case, an external function can also be included for discrete

variables of interest. The function called gini was used again, calculating the Gini coeffi-

cient for the log-normal distribution. The small error bars, also only available for bamlss

objects, show the credible intervals around the predicted moments in each category. The

significance between categories can now be checked in two ways - between the categories

of int_var and between the different covariate combinations chosen in pred_data. In

this case, we can see a significant wage difference between the education, but not the

ethnicity levels.

B The Graphical User Interface

After executing vis(), a new browser window with the started application is opened up.

Figure B3 shows the layout of the application, which is then displayed in the user’s browser.

As visible in Figure B3, the layout of distreg.vis’ GUI is divided into two segments,

which have their own tabs the user can click on. In each segment, one of those tabs is

always displayed. The left segment, with tabs “Overview”, “Scenarios” and “Scenario

Data”, is concerned with model-related settings. The right segment, with tabs “Plot” and
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“Properties” is used to display graphs and properties in reaction to user inputs on the left

segment.

B.1 Overview Tab

The purpose of the overview tab is to display descriptive details about fitted distributional

regression models. After the GUI of distreg.vis is started up, it solely consists of a

drop-down list where the user can select the model on which the further analysis is to be

based. Entries in this list are created by the internal function search_distreg() which

searches the working directory of the current user for any object of the classes bamlss,

gamlss, betareg or betatree (also from the betareg package) . Figure B3 shows only

one entry, wage_model, representing the model fitted with the code provided in Section 2

of the main paper.

After a model is selected, the overview tab expands to show an outline of the fitted

bamlss model. Specifically, as shown in Figure B4, the tab displays two parts, called

“Model Family” and “Model Equations”. “Model Family” shows the family of the model’s

target distribution, as well as the parameters which can be modeled including their link

functions. In the case of wage_model, the family “lognormal” with parameters µ and σ

and link functions “identity” and “log” can be obtained. “Model Equations” displays the

way covariate effects were specified. We can confirm that for wage_model, the effect of age

on both µ and σ is specified using a smooth spline.

B.2 Scenarios Tab

In this tab, the user can interactively specify covariate values for each explanatory variable,

thereby creating a “Scenario”. After these combinations are finalized by clicking a button,

the predicted distribution based on the previously selected model is then graphically dis-

played. This can be repeated with different covariate values to compare the predictions for

multiple covariate combinations.

As displayed in Figure B5, the top of the tab consists of two buttons, “Create Sce-

nario” and “Clear Scenarios”. Right below, web widgets for each explanatory variable
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Figure B4: Expanded overview tab after model selection.

are visible. Here, distreg.vis executes a check for the type of each explanatory variable

and then constructs different web application elements depending on that information.

Categorical covariates receive selector boxes (R function shiny::selectInput()) with

the variable’s possible categories, while for numeric variables slider modules are created

(shiny::numericInput()), ranging from the variables minimum to maximum value. The

default value for numeric covariates is its arithmetic average, while for categorical covariates

the first level of the resulting factor variable is used.

To add a new scenario, the user can now specify a value for each variable and click on

“Create Scenario”. This triggers the plotting window, which in turn displays the predicted

distribution for the specified covariate combination. To compare two or more scenarios,

the user can change the specified covariate values and again press “Create Scenario”. This

way, the graph window will display predicted pdf/cdf functions for each specified covariate

combination. Deleting all previously specified combinations can be achieved by clicking

“Delete Scenario”.

Beneath the visual components of the “scenarios” rests a small database, which stores

each covariate combination the user has specified. This database, created with shiny::

reactiveValues() forms the basis for all other tabs which analyze those covariate com-
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Figure B5: “Scenarios” tab of the distreg.vis GUI.

binations. It has a “reactive” nature, such that all tabs depending on it are automatically

updated when a database value changes.

We can now easily create a graph for the predicted distribution of wages depending on

every education level. To do so, we set the covariates to the following values:

• ethnicity: 1. White

• year: 2006

• education: 1. < HS grad

• age: 42 (= age)

Then, the “Create Scenario” Button is pressed. This is done four more times, with each

time seeing a rise in education level by one category. Thus, we can now view the according

wage distributions for a 42-year-old white male across all levels of education (Figure B6).

Furthermore, the “rug plot” option was selected.
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Figure B6: Plot tab output when specifying five different scenarios with different education
levels.

B.3 Plot Tab

The “Plot” tab, which is located in the right-hand segment of distreg.vis, reacts to user

interaction in the Scenarios tab. Every time the “Create Scenarios” button is pressed, the

tab is updated. Specifically, the data which the user inputs in the left tab is passed onto

distreg.vis::preds(), which then computes predictions for the response distribution

parameters. Afterwards, the predicted parameters are inserted into the probability density

or the cumulative distribution function, which is then graphically displayed. This procedure

is repeated for each covariate combination.

Figure B6 shows the plot output for five different scenarios based on the Wage dataset.

Noticeable in Figure B6 to the right side of the plot are multiple web elements for user

interaction. The first element, found below the description “PDF or CDF?”, provides the

ability to switch between displaying the probability density function (pdf, the default value)

or the cumulative distribution function (cdf). Figure D11 in Section D shows Figure B6

after the “cdf” option was selected.

The second element gives the option to select a different color palette. Its default

value is “default”, which uses the built-in color palette provided in ggplot2 (Wickham,

19



Figure B7: “Scenario Data” tab.

2016). The selected color palette in Figure B6 is “viridis” (from R package viridis), a

colorblind-friendly palette (Garnier, 2017).

Using the third element labelled “Rug plot?”, a small strip chart at the bottom of

the graph can be added, displaying the observation frequency at each level of the target

variable’s range. The fourth web element on the right side of the plot output, a red button

with the description “Obtain Code!”, adds reproducibility to the plot. When clicked, a

modal window pops up with R commands that, if executed in the main R console with the

user’s current working environment, directly recreates the graph currently being displayed

in the “Plot” tab. Figure D12 in Section D shows the modal window which arises when

pressing the “Obtain Code!” button in the interface of Figure B6.

B.4 Scenario Data Tab

While the “Scenario” tab gives the ability to quickly specify covariate values, sometimes

the user might want to type in exact values on which to make predictions. Furthermore,

one might want to see what values were previously specified in the “Scenarios” tab. For

both reasons the tab “Scenario Data” was created in distreg.vis’ left segment.

Figure B7 shows the tab’s layout. As visible, the only present web element is a table

placed underneath the description “Edit scenario data here”. This table, created with the

R package rhandsontable (Owen, 2016) represents the editable version of all data input

from the “Scenarios” tab. Columns represent the specified covariates, while one row counts
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as one “scenario”. In Figure B7, it is possible to see that only three columns of the original

six are currently visible. This cut-off was integrated to prevent an overlap with the plot.

Nevertheless, the user can use the scrolling bar at the bottom to reach other columns.

One additional column is added to the existing covariates, labelled “rownames”. With this

column, each “scenario” obtains a new label, which then automatically transfers to the

legend of each graph.

To edit an observation from categorical variables, users can click on a small drop-down

button in the cell which can be edited. The table recognizes categorical variables and will

then provide a menu where the desired value is to be selected. With numeric variables,

users can select the cell and then input the value they wish to make predictions with.

Values in logical variables can be specified by checking or un-checking a box in the cell.

With the ability to specify own covariate values also comes the ability in numeric cases

to type in numbers that are not in the original variable’s range. In the case of cnorm_model,

this could mean that one tries to make predictions for incomes in the year 2050, which

is far beyond max(year) = 2009. To circumvent the irresponsible usage of model predic-

tions, distreg.vis will display a warning pop-up message with the name of the covariate

combination (P plus the respective number if not changed with column “rownames”) where

values were specified which are out of the original variable’s range (Section D: Figure D13).

B.5 Properties Tab

Previous chapters have described that the “Plot” tab visualizes the predicted distributions

for each covariate combination specified in the “Properties” tab. However, while differ-

ences in distributions for each combination were visible (e.g., in Figure B6), it is only

indirectly possible to infer influences of the complete range of a numerical covariate on the

distributional moments.

To provide this functionality, the tab “Properties” was implemented in distreg.vis,

located in the right-hand segment and greatly building upon the function plot_moments().

When opened, the “Properties” tab reveals two sub-tabs: “Influence graph” and “Table”.

As visible in Figure B8, the “Influence graph” tab consists of a graph on the left side
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Figure B8: Influence of age on the first two moments of the predicted distributions for
wage_model.

next to a small bar with additional options. On the right side, the continuous variable age

was selected. This leads to a recreation of Figure A2 part a) without the specification of

the external function. Selecting the categorical variable ethnicity would lead to part b)

of Figure A2.

Next to the plot in the “Influence graph” tab multiple web elements are displayed.

The first one, located under the description “Expl. variable for plotting influence”, lets

the user select the explanatory variable for which the influence plot shall be created. The

second element gives options to choose a color palette, similar to Figure B6. In Figures B8

the “viridis” color palette was specified to account for potential colorblindness. Below the

palette selector the same red button as in Figure B6 is placed which when pressed presents

code to reproduce the influence plot with (Section D: Figure D14).

At the bottom end of the web elements, we see a selector element titled “Include own

function”, which corresponds to the plot_moments() argument ex_fun. If a user-written

function calculating a measure based on the expected parameters of the target distribution

is specified here, the influence of the selected covariate on this measure is calculated and
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included into the plot (similar to part a) of Figure A2).

The other sub-tab of “Properties” called “Table” is useful if the user solely wants to

see the differences in distributional moment values across specified covariate combinations

in the “Scenarios tab”, without it depending on a selected covariate’s range. Figure D15

shows this tab’s layout.

The only present element in this tab is a table showing two columns, Expected_Value

and Variance with computed values for the first two moments. Every row depicts one

covariate combination specified in the “Scenario” tab.

C Special Case of plot dist()

One more special case exists within using plot_moments(), which appears when the family

of multinomial distributions is used for describing the dependent variable. Due to the nature

of the variable’s parameters πi as the probability to fall into category i always summing up

to 1, we can visualize the impact of a continuous variable differently. Figure C9 shows such

a case, where the influence of a continuous variable named norm1 on a categorical variable,

both stemming from a simulated dataset, was graphically displayed.

The three windows in Figure C9 represent three different covariate combinations spec-

ified in pred_data. On the x-axis, we see the range of int_var, while the y axis denotes

probabilities. Every colored area represents the expected probability for a new observation

to fall into any of the categories of the dependent variable. Due to the target distribution

being highly dependent on the simulated explanatory variables, its probabilities change

considerably over the range of the variable norm2.
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Figure C9: Outcome of plot_moments() for a model with a simulated multinomial target
distribution. In this case, each scenario gets its own window, with the expected probabilities
to fall into each category ranging over the variable of interest.

D Additional Graphs

Figure D10: Button to start the main application of distreg.vis in RStudio.

24



Figure D11: Cumulative Distribution Function plot output for different education levels
based on the Wage dataset.

Figure D12: Modal window with formatted and highlighted code after pressing the “Obtain
Code!” button
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Figure D13: Warning message when specifying covariate combinations which are out of
range.

Figure D14: Modal window to display code for reproducing the influence plot.
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Figure D15: Expected Value and Variance for predicted distributions based on specified
covariate combinations.
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