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Abstract: Motivated by a longitudinal oral health study, the Signal-Tandmobiel® study,
an inhomogeneous mixed hidden Markov model with continuous state-space is proposed to
explain the caries disease process in children between 6 and 12 years of age. The binary
caries experience outcomes are subject to misclassification. We modeled this misclassifica-
tion process via a longitudinal latent continuous response subject to a measurement error
process and showing a monotone behaviour. The baseline distributions of the unobservable
continuous processes are defined as a function of the covariates through the specification of
conditional distributions making use of the Markov property. In addition, random effects
are considered to model the relationships among the multivariate responses. Our approach
is in contrast with a previous approach working on the binary outcome scale. This method
requires conditional independence of the possibly corrupted binary outcomes on the true
binary outcomes. We assumed conditional independence on the latent scale, which is a
weaker assumption than conditional independence on the binary scale. The aim of this
paper is therefore to show the properties of a model for a progressive longitudinal response
with misclassification on the manifest scale but modeled on the latent scale. The model
parameters are estimated in a Bayesian way using an efficient Markov chain Monte Carlo
method. The model performance is shown through a simulation-based example, and the
analysis of the motivating dataset is presented.
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1 Conditional independence

Based on Garcia-Zattera et al. (2007), we have adapted some of the results to show that
conditional independence for a latent continuous vector does not imply conditional inde-
pendence for a binary response vector for a simplified version of our model.

Proposition: Assume that the vector Y™ = (Y,...,Y}) follows a monotone homoge-
neous hidden Markov model with continuous state-space, considering measurement error
and parameterized by the following:

)

Yk - .
0 if Wy <0

) {1 if W >0
Wi~ N(Wg,o?),
Wl ~ N(nla]-)a

Wi|Wi—1 = wi—1 ~ N(ng, DI[Wy > wi—1].

Assume that the measurement error process is characterized by the equivalent univariate
versions of Assumptions (A.1)-(A.6), see Appendix A in the paper. Then, the responses are
not conditionally independent.

Proof: The conditional independence assumptions (A.1)-(A.6) show that:

p(Wy, Wa Wy, Wa) = p(W7 W, Wa)p(W5|W1, W),
p(W;7W13W3|W2) p(W5|W2)p(W17W3’W2)a

and this imply that:

p(W{, W3 W) = p(W{|Wy)p(W5|W2),
p(Wh, W3|Wa) = p(Wi|Wa)p(Ws|Wa).

However, this does not happen with the response binary variable Y*, i.e.:

p(Y7, Y5Yy) # p(Y7[Yo)p(Y[Yy)

This is because:

p(Y7" =1,Y5 =1[Y5 =1) (1.1)
= p(Wy >0,W5 > 0[Wy >0)
fooo fooo fooo f(wi, w3, w3)dwidwidws
Jo© fws)dws
Io  Jo Jo~ S T Fwslws) f(ws|we) f(wilw:) f(ws|ws) f (wa]w:) f (wi)dw dwadwsdwi dwsdws
Jo" [ [ Fws|ws) f(wz]wr) f(wr)dw dwadws
fff<I>(w3;0,02)<I>(w2;0,02)<1>(w1;0,02)1?;11(};;;’;37;;})1) li(;’(}ij:’;;)l)cé(wl;nh 1)dw; dwadws

J [ ®(ws;0,0%) T2 (wy sy, 1)duwy duwy
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where ®(w*;w,o?) denotes the cumulative distribution function of the random variable
(r.v.) W* having a distribution W* ~ N(w,c?); and ¢(w*;w,0?) denotes the probability
density function of the r.v. W* ~ N(w, 0?) evaluated in w*. But,
p(¥7 = 1¥; = Dp(¥ = 1% = 1) (12)
= p(Wi > 0[W5 > 0)p(Wy5 > 0[W5 > 0)
fooo fooo f f fwy, ws, wy, we)dw;dwedwidws
fOoo fff(wnghU}Q)dwldU/de;
% I S~ J I ) Fws, w5, wi, we, ws)dw dwedwsdws dws
fooo fff(w;7w17w2)dw1dw2d’w’2k
IS SSS S S F(ws|ws) f(wi|wr) f (welwy) f(wr)dwy dwadwi dws
fooo I [ fwi|ws) f(we|wr) f(wr)dwy dwadw}
% IS S T T f(wslws) f(wslws) f(wslws) f (we|w:) f (wi)dw; dwadwsdw; dw}
fooofff(w§\w2)f(w2|w1)f(w1)dw1dw2dw;
ff@(w2;0,a2)@(w1§0,02)%(;5(1111;171, 1)dw dws
ffq)(w%o’az)%ﬂwl;m,1)dw1dw2
« f f f O (ws; 0, 0'2)(1)(102; 0, 02) 1fgbq‘(’;;71?;;31,)1) 1?;“(’317;2”721’)1)¢(w1; m, 1)dw; dwadws

ff@(wg;(),cﬂ)%(b(wl;m, 1)dwdws

Expressions (1.1) and (1.2) are different. Expression (1.1) is larger than expression (1.2),
because

E(g1(X)g2(X)) > E(g1(X))E(g2(X)),

holds for nondecreasing functions g; and go.
Although there are no simple solutions of these integrals, it is clear that
p(Y7, Y5 Ys) = p(Y7[Yo)p(YsYy).

This shows that conditional independence on the latent scale does not imply conditional
independence on the observed scale and vice versa.
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2 Simulation-based experiment for conditional independence

By simulation it can be shown how there is conditional independence on latent scale, but
not on the manifest scale.

Data have been simulated by considering multivariate normal distribution, W ~ N(0, V),
where V is the variance-covariance matrix, where the variances vary in the interval (0.1, 10),
and with zero non-diagonal elements, with the property that always:

100
R = 010

0 0 1
Samples of size n = 10000 are simulated for W'.

Then, the binary responses were generated by dichotomizing W, i.e. Y = 1if W > 0 and
Y =0if W < 0. The association between Y and Y] conditional on Y;, =y (Y}, Y|Y}, =) is
reviewed, where y is 0 or 1, first the tables of 2 x 2 are obtained, and second the Pearson’s
contingency coefficient are computed.

The R code is the following.

library (MASS)
library(corpcor)
library(DescTools)
vv = seq(0.1,10,0.5)  ### different values for the precisions
m = length(vv)
RHO = matrix(NA,m"~3,3%4) ### save results here
N = 10000  ### sample size
idx = 0
for(il in 1:m){ for(i2 in 1:m){ for(i3 in 1:m){
vl = vv[il]  ### diagonal 1

v2 = vv[i2]  ### diagonal 2
v3 = vv[i3]  ### diagonal 3
R = matrix(c(1,0,0, 0,1,0, 0,0,1),3,3) ### partial correlation matrix

A = matrix(0,3,3)
diag(A) = c(vl,v2,v3) ### precisions = 1/variances

V = solve(sqrt(A) %% R %*) sqrt(A))  ### variance covariance matrix
W = mvrnorm(n=N, mu=rep(0,3), Sigma=V) ### simulate latent scale
Y = ifelse(W>0,1,0) ### manifiest scale

idx = idx+1 ### index to save results

RHO[idx,1:3] c(vl,v2,v3) ### precisions
RHO[idx,4:6] c(v[1,1]1,v[2,2]1,VI[3,3]) ### variances
### Pearson's contingency coefficient

RHO[idx,7] = ContCoef(Y[Y[,3]==0,1],Y[Y[,3]==0,2])
RHO[idx,8] ContCoef (Y[Y[,3]==1,1]1,Y[Y[,3]==1,2])
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RHO[idx,9] = ContCoef(Y[Y[,2]==0,1],Y[Y[,2]==0,3])
RHO[idx,10] = ContCoef (Y[Y[,2]==1,11,Y[Y[,2]==1,31)
RHO[idx,11] = ContCoef (Y[Y[,1]1==0,2],Y[Y[,1]1==0,31)
RHO[idx,12] = ContCoef(Y[Y[,1]1==1,2],Y[Y[,1]1==1,31)
P}
hist(c(RHOL,7],RHO[,8],RHO[,9],RHO[,10] ,RHO[,11]1,RHO[,12]) , nclass=50,
main="Pearson's contingency coefficient",xlab="")

In order to compute the variance-covariance matrix V from the partial correlation matrix R
we use the property that R = diag(V~—1)"1/2V~1diag(V~')"1/2, see e.g. Whittaker (1990).

Figure 1 shows their contingency coefficients for Y}, Y]|Y}, = y. Notice that with conditional
independence on latent scale, one can assume conditional dependence on manifest scale,
and Figure 1 shows the size of this dependency. This figure shows that the conditional
dependence on the manifest scale is rather limited, but the conditional dependence could
have a more important effect with more responses as in our study.

Pearson's contingency coefficient

Frequency
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[ I I I I I 1
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Figure 1: Pearson’s contingency coefficients for Y}, Y|V}, = v.
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3 Identifiability

Based on the propositions 2 and 3 presented in Garcia-Zattera et al. (2012), we have derived
a proposition that shows the identifiability of the parameters for a simplified version of our
model.

Proposition: Assume that the vector Y* = (Y*,...,Yy) follows a monotone homoge-
neous hidden Markov model with continuous state-space, considering measurement error,
parameterized by the following:

. 1L ifW;>0
Y, = .
0 if Wy <0
N(Wy, 0?),
Wl ~ N(nlu 1)7
WilWi—1 = wp—1 ~ N(ng, DI[Wg, > wg_q].

Assume that the measurement error process is characterized by the equivalent univariate
versions of Assumptions (A.1)-(A.6), see Appendix A in the paper. Then, the parameters
are identified.

Proof: The proof is based on the expression of the parameters of interest as functions
of other identified quantities. Assume that two time points are considered, K = 2. Let
Q= p(Yy = 0¥y =0), @ = p(¥7 = L,Y5 = 0), Qs = p(¥7 = 0,Y5 = 1), and
Q4 =p(Y]" =1,Y5 = 1), be the corresponding probabilities, which are identified quantities.
These probabilities are the following functions of the parameters of interest:

@1

p(¥7 = 0,Y5 = 0) = p(W} < 0,W <0)
=/L/mmgwmwxwmmmmmmmW

wo; M2, 1
== / / 0 w2, 0 )@(0;’(1)170'2)1 ib(q>(2w,’172772)1) ¢(w1§771, 1)dw1dw27

where ®(w*;w,0?) denotes the cumulative distribution function of the random variable
(r.v.) W* having a distribution W* ~ N(w, 0?); and ¢(w*;w, 0?) denotes the probability
density function of the r.v. W* ~ N(w, 0?) evaluated in w*. Also,

/’w%mmum>WWWMMWMMm

8 <

88
2 g

P(wa;m2,1)
1 — ®(wi;m2,1)

I
— =

CI) 0 wa, 0’2)[1 — ‘I’(O; w1, 0'2)] ¢(w1;n1, l)dwldwg,

—00

8
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Qs = p(Y7"=0,Yy=1)=p(W <0,Wy >0)
- / / p(W; > 0fwn)p(W; < Olwy)p(walws)p(wr)dwsdu
— 2 P(0: 2 ¢(w27"727 . 1
/ / O wa, 0 )] (07w1>0- )1 — q’(ﬂjl;’ng,l)(b(whnh )d'UJldlUg,

= / / p(W5 > Owa)p(W7 > 0|w)p(wa|wi)p(wr)dwidws

_ /oo /OO [1— ®(0; w2, 0)][1 — (0; w,07)] : ib(gi;?.z;)l)é(wl;m’ 1)dw dws.

Therefore, parameters 7y, 72 and o2 can be identified by functions of identified quantities

Q17 Q27 Q?) and Q4- u

The proof of the multivariate case is difficult to derive, because there is no exact determin-
istic version to show the identifiability of the parameters.
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4 Identifiability on covariance matrix of the random effects

Usually, the prior distributions for covariance matrix QF and Q are Wishart distributions.

However, in this paper, QF and Q! are covariance matrices of the random intercepts uf =

(uff,... ,ufj)’ and u! = (uf,... ,ul;)’, because uf ~ N;(0,QF) and u! ~ N;(0,Q!), and
they are part of the linear predictor,

mjr = o1 +aB° + 2" +ul,
Nijk = Qi+ :Irgj,BI + z;jk’yl + ui[j, fork=2,...,K,
Wij1 ~ N(nij1,1),
Wiik|Wijk—1 = wije—1 ~ Njijr, DIWije > wijg-1],

where the W;;.’s are latent variables.

A constraint must be given for QF and Q!, otherwise convergence of MCMC chains will fail
due to the lack of the identifiability of the parameters. In the paper, we have used the prior
distributions proposed by Curtis (2010).

Based on the proposal of Curtis (2010), QF is parametrized in terms of its Cholesky de-
composition QF = I'PT*’ where I'" is a lower triangular matrix, with entries equal to one

on the diagonal, and unrestricted entries below the diagonal, i.e. Fﬁ =1lforli=1,...,J,
Fl}ilz =0forly=1,...,J—landls =1 +1,...,J, andlﬂl]jl2 ~N(0,1) for i} =2,...,J and
lo =1,...,1; — 1. Setting the first element of '’ equal to one ensures that the first element

of QF is also equal to one, and therefore the first variance of QF is constant to avoid lack
of identifiability of parameters. Analogous prior distribution is defined on Q.

Therefore, when a constraint with the parameters is used, the convergence is achieved, all the
parameters are detectable, and there is no lack of identifiability. This effect is analogue to the
one with the multivariate probit model. When latent variables are introduced, a constraint
on the covariance matrix of the latent variables is needed. In fact, in the multivariate probit
model, a correlation matrix is used, see e.g. Chib and Greenberg (1998).

In order to show the lack of identifiability and lack of convergence when no constraints
are considered, we have present a simple example based on two simulated datasets. They
have been simulated by the same way: N = 1000 subjects, J = 3 measures, K = 5 time
points, p = 2 variables, ¢ = 2 time-varying variables, where x;; ~ U(0,1) and z;; ~ U(0, 1),
o= (—4,...,—4), B = (1.5,1.5), B = (1.5,1.5), vF = (1.5,1.5), v/ = (1.5,1.5), Q =
examiners where (o1,...,0¢9) = (0.25,0.5,0.75,1), and matrices

1 0.6247 0.5026
QFf =qf = 0.6247 1 0.7624
0.5026 0.7624 1

Figure 2 shows some traces and densities of the estimates by considering the constraint that
one of the variances of QF and Q! must be equal to 1.
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On the contrary, Figure 3 shows some traces and densities of the estimates by considering
that QF and Q! are covariance matrices, i.e. without considering any constraints on the
parameters. Note that the estimates on some parameters of QF and Q' do not converge
and the estimates of other parameters are more biased.
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Figure 3: Traces and densities considering Q" and Q! are covariances, without constraints.
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5 Sensitivity analysis

A sensitivity analysis for some prior distributions in the model is given here. The aim of this
sensitivity analysis is to assess if the results are affected when different prior distributions are
assumed for the regression coefficients 87, 87, v and 47, and intercept parameters e in the
linear predictor, and for the variance parameters o2, ... ,aé. The remaining variables have
the same prior distributions as described in Section 4.1. Four different scenarios have been
considered, using the following prior distributions for 8t B’ ~F. 41, o and a%, . ,022:

(A) Normal and Inverse Gamma (as in Section 6). Specifically, we have taken as prior
distributions: 5{; ~ N(0,100) and B{ﬁ ~ N(0,100) for Ig = 1,2,3,4, ’yl]j ~ N(0, 100)
and '7{W ~ N(0,100) for iy = 1,2,3, oy ~ N(0,100) for & = 1,...,6, and for the

variances 0120 ~1G(0.01,0.01) for I, =1,...,16,

(B) Laplace and Inverse Gamma (as in Section 6). Specifically, Laplace prior distributions
were considered for the regression coefficients and for the intercept parameters in
the linear predictor, i.e., let 8 denote each one of the parameters for the regression
coefficients and for the intercept parameters in the linear predictor, 6 ~ N(0, 100) and
0 ~N (O, Rg) , where ﬁg = 7'92/)3, 792 ~ Exp ()\3/2) , )\g ~ Gamma(1,1), pg ~ 1G(1,1).
And for the variances O‘lQJ ~ 1G(0.01,0.01) for I, = 1,...,16.

(C) Normal and Uniform. Specifically, Normal prior distributions were considered for the
regression coefficients in the linear predictor (as in A), and for the standard deviations
o1, ~ Uniform(0, 100) for I, =1,...,16.

(D) Laplace and Uniform. Specifically, Laplace prior distributions were considered for the
regression coefficients in the linear predictor (as in B), and for the standard deviations
o1, ~ Uniform(0, 100) for I, =1, ..., 16.

Tables 1 and 2 show the estimated posterior results for the regression coefficients and in-
tercept parameters in the linear predictor. Note that all prior distributions lead to similar
posterior results. No relevant changes have been observed, hence the effect of the choice of
prior distributions for the parameters is minimal given the fact that different prior distri-
butions have been used. Therefore, the model can be considered as robust against changes
in the prior distributions for the parameters.

Figure 4 shows the estimates for the standar deviation parameters o¢ associated to the
examiners £. No relevant changes have been observed.
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Figure 4: Estimated posterior medians, and 2.5% and 97.5% centiles for dental examiner’s
measurement error standard deviations o.
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Table 1: Estimated posterior means, medians, standard deviations (SD), and 2.5% and 97.5%
centiles, for the regression coefficients associated to the prevalences and incidences for CE in
permanent first molars.

Parameter Covariate (A) Normal and Inverse Gamma (B) Laplace and Inverse Gamma
Mean Median SD  2.5% 97.5% Mean Median SD  2.5% 97.5%
Prevalences Gender 0.118 0.117 0.074 -0.023 0.264 0.107  0.105 0.067 -0.022 0.243
BY Startbr 0.209 0.209 0.072 0.068 0.349 0.193 0.194 0.071 0.053 0.332

z-ordinate  0.066  0.066 0.078 -0.091 0.216 0.060 0.060 0.070 -0.076 0.197
y-ordinate -0.174 -0.173 0.077 -0.329-0.026 -0.129 -0.128 0.069 -0.267 0.004

Prevalences Age 0.244 0.243 0.079 0.091 0.401 0.220 0.217 0.078 0.074 0.377
~F Meals 0.084 0.084 0.061 -0.037 0.202 0.077 0.076 0.064 -0.047 0.204
Incidences  Gender 0.145 0.144 0.082 -0.012 0.306 0.125 0.125 0.082 -0.031 0.285
B! Startbr 0.204 0.204 0.080 0.052 0.359 0.166 0.166 0.080 0.011 0.326

xz-ordinate  0.257  0.255 0.084 0.094 0.426 0.223 0.223 0.096 0.032 0.421
y-ordinate -0.038 -0.038 0.086 -0.207 0.132 -0.045 -0.045 0.072 -0.188 0.093

Incidences Age -0.041 -0.039 0.081 -0.205 0.112 -0.031 -0.031 0.073 -0.176 0.112
~1 Years-exam 0.214 0.216 0.091 0.031 0.387 0.178 0.180 0.086 0.013 0.345
Meals 0.230 0.230 0.081 0.070 0.387 0.191 0.190 0.083 0.033 0.356

Intercepts -3.394 -3.395 0.100 -3.592-3.189 -3.341 -3.359 0.143 -3.574-2.966
o % -4.026 -4.020 0.167 -4.376-3.714 -3.979 -3.988 0.239 -4.416 -3.428
a3 -4.428 -4.416 0.207 -4.868 -4.063 -4.413 -4.403 0.240 -4.917-3.964

oy -6.020 -5.939 0.610 -7.447 -5.067 -5.999 -5.908 0.647 -7.569 -4.994

as -4.464 -4.442 0.298 -5.123-3.945 -4.415 -4.400 0.309 -5.066-3.867

g -16.597 -15.642 4.903 -28.261 -9.498 -15.568 -14.140 5.718 -30.921 -9.042
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Table 2: Estimated posterior means, medians, standard deviations (SD), and 2.5% and 97.5%
centiles, for the regression coefficients associated to the prevalences and incidences for CE in
permanent first molars.

Parameter Covariate (C) Normal and Uniform (D) Laplace and Uniform
Mean Median SD  2.5% 97.5% Mean Median SD  2.5% 97.5%
Prevalences Gender 0.139 0.138 0.075 -0.004 0.288 0.113 0.113 0.069 -0.022 0.248
Br Startbr 0.226 0.224 0.074 0.083 0.376 0.208 0.207 0.068 0.076 0.345

z-ordinate  0.069  0.072 0.080 -0.099 0.221 0.064 0.064 0.073 -0.077 0.206
y-ordinate -0.191 -0.192 0.077 -0.346-0.039 -0.143 -0.141 0.072 -0.292-0.001

Prevalences Age 0.252 0.252 0.072 0.110 0.392 0.220 0.221 0.075 0.071 0.363
~F Meals 0.082 0.081 0.064 -0.040 0.210 0.082 0.081 0.061 -0.034 0.203
Incidences  Gender 0.148 0.150 0.081 -0.021 0.304 0.119 0.117 0.078 -0.027 0.276
B! Startbr 0.208 0.207 0.077 0.054 0.355 0.167 0.166 0.074 0.023 0.312

xz-ordinate  0.254  0.252 0.081 0.096 0.421 0.222 0.222 0.080 0.065 0.381
y-ordinate  -0.039 -0.041 0.075 -0.182 0.107 -0.056 -0.052 0.082 -0.231 0.104

Incidences Age -0.046 -0.047 0.079 -0.205 0.104 -0.041 -0.039 0.078 -0.199 0.109
~1 Years-exam 0.220 0.221 0.087 0.049 0.393 0.165 0.164 0.088 -0.009 0.338
Meals 0.245 0.247 0.079 0.088 0.393 0.237  0.237 0.078 0.077 0.389

Intercepts g -3.440 -3.438 0.087 -3.618-3.276 -3.394 -3.396 0.087 -3.563-3.218
o a2 -4.083 -4.081 0.156 -4.392-3.793 -4.024 -4.014 0.156 -4.350-3.745
a3 -4.416 -4.407 0.214 -4.863-4.023 -4.404 -4.390 0.227 -4.907 -3.980

oy -6.061 -5.965 0.633 -7.613-5.098 -6.064 -5.962 0.699 -7.779 -4.988

as -4.414 -4.389 0.273 -4.997 -3.923 -4.553 -4.550 0.288 -5.168 -4.024

g -16.087 -15.361 4.190 -25.436-9.836 -14.223 -12.868 4.934 -27.024 -8.417
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