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Abstract: In sampling designs that utilize peer recruitment, the sampling process is par-
tially unknown and must be modeled to make inference about the population and estimate
standard outcomes like prevalence. We develop a Bayesian model for the recruitment process
for respondent-driven sampling (RDS), a network sampling methodology used worldwide
to sample hidden populations that are not reachable by conventional sampling techniques,
including those at high risk for HIV/AIDS. Current models for the RDS sampling process
typically assume that recruitment occurs randomly given the population social network, but
this is likely untrue in practice. To model preferential selection on covariates, we develop a
sequential two-sided rational choice framework, which allows generative probabilistic net-
work models to be created for the RDS sampling process. In the rational choice framework,
members of the population make recruitment and participation choices based on observable
nodal and dyadic covariates to maximize their utility given constraints. Inference is made
about recruitment preferences given the observed recruitment chain in a Bayesian frame-
work by incorporating the latent utilities and sampling from the joint posterior distribution
via Markov chain Monte Carlo. We present simulation results and apply the model to an
RDS study of Francophone migrants in Rabat, Morocco.

Key words: hidden population; Markov chain Monte Carlo; peer recruitment; rational
choice model; respondent-driven sampling; sampling process model

S.1 Stable Matching Example

To aid understanding of stability, we provide several examples. Figure S1 gives an example
of some possible preferences that would make a matching stable or unstable. In the simplest
example of a coalition blocking a matching, there are two recruiter-peer dyads matched in
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Scenario Matching
Recruiter
Preference

Peer Preference Stable?

1

A 1

B 2

C 3

A 1

B 2

C 3

A 1

B 2

C 3

Yes

2

A 1

B 2

C 3

A 1

B 2

C 3

A 1

B 2

C 3

Yes

3

A 1

B 2

C 3

A 1

B 2

C 3

A 1

B 2

C 3

No

Figure S1: Stability example with recruiters A, B, and C shown as blue circles; and peers
1, 2, and 3 shown as red squares. In scenario 1, all recruiters and peers most prefer their
current match, so the matching is stable. In scenario 2, all recruiters prefer their current
partner even though none of the peers do, so the matching is still stable. In scenario 3,
all members of the dyads (A, 1) and (B, 2) would prefer to swap partners so that the new
pairing would be (A, 2) and (B, 1), making the matching unstable.

m such that 1 ∈ m(A) and 2 ∈ m(B). If recruiter A actually prefers peer 2 over peer 1,
recruiter B prefers peer 1, peer 1 prefers recruiter B, and peer 2 prefers recruiter A, then
the alternate matching m′ where 2 ∈ m′(A) and 1 ∈ m′(B) is preferable to all parties. In
this case, the coalition of {A,B, 1, 2} blocks matching m, so it is not stable.

S.2 Matching Process Example

We provide an example to demonstrate the matching process. Consider a scenario with
three recruiters R = {r1, r2, r3} and five peers P = {p1, p2, p3, p4, p5}, where each recruiter
has nc = 2 coupons. Therefore A = {a1, a2} and D = {d1}. Assume the utility matrices
U and V are known and can be ranked across each row to produce the row-ranked utility
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Iteration Recruiter Choice Peer Options Peer Choice Failed Attempts

1

Cr1 = p1 a1

Cr2 = a1 p5

Cr3 = p5 p3

Jp1 = r1 d1

Jp2 = d1

Jp3 = r3 d1

Jp4 = d1

Jp5 = r2 r3 d1

J̃p1 = r1

J̃p2 = d1

J̃p3 = d1

J̃p4 = d1

J̃p5 = r3

Fr1 =

Fr2 = p5

Fr3 = p3

2

Cr1 = p1 a1

Cr2 = a1 p2

Cr3 = p5 a1

Jp1 = r1

Jp2 = r2 d1

Jp3 = d1

Jp4 = d1

Jp5 = r3

J̃p1 = r1

J̃p2 = d1

J̃p3 = d1

J̃p4 = d1

J̃p5 = r3

Fr1 =

Fr2 = p2 p5

Fr3 = p3

3

Cr1 = p1 a1

Cr2 = a1 a2

Cr3 = p5 a1

Jp1 = r1

Jp2 = d1

Jp3 = d1

Jp4 = d1

Jp5 = r3

J̃p1 = r1

J̃p2 = d1

J̃p3 = d1

J̃p4 = d1

J̃p5 = r3

Fr1 =

Fr2 = p2 p5

Fr3 = p3

Figure S2: Matching algorithm example where the row-ranked utility matrices U∗ and V∗

are given in Equation S2.1. Recruiters are indicated by blue circles, peers by red squares,
and abstentions and declensions by gray hexagons. Shaded shapes indicate the first time a
choice is possible. The final matching is achieved in three iterations (shown in bottom left
cell), with r1 recruiting p1, r2 not recruiting anyone, and r3 recruiting p5.

matrices U∗ and V∗:

U∗ =




p1 p2 p3 p4 p5 a1 a2

r1 1 3 6 5 7 2 4
r2 6 3 5 7 2 1 4
r3 6 7 2 4 1 3 5


 V∗ =




r1 r2 r3 d1

p1 1 2 4 3
p2 3 4 2 1
p3 4 1 3 2
p4 2 4 3 1
p5 3 4 1 2




(S2.1)

where ‘1’ indicates the highest preference. Figure S2 shows how the matching algorithm
applies in this example, which requires three iterations to complete. At each iteration, new
choices are shown as filled in circles, while previously tentatively accepted choices are shown
as open circles. The final outcome is that r1 selects p1, r2 does not recruit anyone, and r3
selects p5.
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S.3 RCPS Algorithm

We can make draws from the joint posterior of π(α, β, ξ, ζ,U,V |m ∈ M) using Gibbs
sampling because we can specify the full conditional distributions for α, β, ξ, ζ, U, and V.
The full conditional distributions for α and U are given in the text; those for β, ξ, ζ, and
V are provided here.

S.3.1 Full Conditional Distributions

The full conditional distribution for β is

p(β |α, ξ, ζ,U,V,m ∈M) = p(β |V,Y) (S3.1)

∝ π(β) p(V |β,Y)

Using the conjugate prior π(β) = MVN (µβ,Σβ), the update step in the Gibbs sampler
is β(k+1) |V(k),Y ∼ MVN (µ̃β, Σ̃β) where Σ̃−1β =

∑np
j=1

∑nr
i=1 YjiY

′
ji + Σ−1β and µ̃β =

Σ̃β

(∑np
j=1

∑nr
i=1 Yjiv

(k)
ji + Σ−1β µβ

)
.

The same holds for ξ and ζ. The conditional distribution for ξ is

p(ξ |α, β, ζ,U,V,m ∈M) = p(ξ |U,A) (S3.2)

∝ π(ξ) p(U | ξ,A)

Using the conjugate prior π(ξ) = MVN (µξ,Σξ), the update step in the Gibbs sampler

is ξ(k+1) |U(k),A ∼ MVN (µ̃ξ, Σ̃ξ) where Σ̃−1ξ =
∑nr

i=1

∑np+nc
j=np+1 AijA

′
ij + Σ−1ξ and µ̃ξ =

Σ̃ξ

(∑nr
i=1

∑np+nc
j=np+1 Aiju

(k)
ij + Σ−1ξ µξ

)
. The conditional distribution for ζ is

p(ζ |α, β, ξ,U,V,m ∈M) = p(ζ |V,D) (S3.3)

∝ π(ζ) p(V | ζ,D)

Using the conjugate prior π(ζ) = MVN (µζ ,Σζ), the update step in the Gibbs sampler
is ζ(k+1) |V(k),D ∼ MVN (µ̃ζ , Σ̃ζ) where Σ̃−1ζ =

∑np
j=1

∑nr+1
i=nr+1 DjiD

′
ji + Σ−1ζ and µ̃ζ =

Σ̃ζ

(∑np
j=1

∑nr+1
i=nr+1 Djiv

(k)
ji + Σ−1ζ µζ

)
. Note the change of the indices on the summation

for abstentions and declensions.

Unlike the preference parameters α, β, ξ, and ζ, the conditional distributions of U and
V depend on each other. The conditional distribution for U is given in the main text
in Equation (2.11), and the bounds for the truncated normal distribution are provided in
Table 1. Additional detail about the bounds is provided here, as well as the full conditional
distribution for V.

Consider a recruiter i ∈ R and peer j ∈ P who are tied. We know that i must have a higher
utility for j than for any abstention they do not select: uij ≥ max(Ui,A−i ). Additionally,
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i must have a higher utility for j than they do for any peers who prefer i over their own
match. These are the peers h 6= j, h 6∈ m(i) that i has in their opportunity set O(i):

O(i) = {h : vhi ≥ vh,m(h);h ∈ P, h 6∈ m(i)}. (S3.4)

Therefore, uij ≥ max(Ui,h∈O(i)) where Ui,h∈O(i) = {uih : h ∈ O(i)}. These two bounds,
required to satisfy stability constraints, result in aU;ij = max(Ui,A−i ∪Ui,h∈O(i)). Since i and

j are matched, uij has no upper bound so bU;ij = ∞. This is the scenario in the first row
of Table 1.

The constraints are the same if j ∈ A and there is a match (j is abstention that is selected).
This is the scenario in the third row of Table 1.

When i and j are not matched and j ∈ P (j is a peer), the utility that i has for j must be
less than the utility i has for any of their matches if j prefers i over their own match. This
is the scenario in the second row of Table 1. In particular, uij ≤ min(Ui,m(i)) if vji > vj,m(j).
Therefore, aU;ij = −∞ and bU;ij is either min(Ui,m(i)) or ∞. If peer j prefers their own
match over recruiter i, the utility that i has for j is irrelevant, so the draw is unconstrained.

Finally, when i and j are not matched and j ∈ A (j is an abstention), the utility that i
has for j must be less than the utility i has for any of their matches. This is the scenario
in the fourth row of Table 1. In particular, uij ≤ min(Ui,m(i)). Thus, aU;ij = −∞ and
bU;ij = min(Ui,m(i)).

Based on these constraints, u
(k+1)
ij ∼ ψ(α(k)Xij + ξ(k)Aij , σ

2
ε , aU;ij , bU;ij).

The derivation for the conditional distribution of V is similar, differing only due to the
many-to-one nature of the matching. For V, again explicitly stating the observed covariates

Y and declension structure D, and assuming γji
iid∼ N(0, σ2γ):

p(vji |V−{ji}, β, ζ,U,Yji,Dji,m ∈M) = N(βYji + ζDji, σ
2
γ) (S3.5)

constrained such that U and the updated V reproduce the observed matching via the
matching mechanism in Algorithm 1.

Therefore, given β(k) and ζ(k), new draws of V(k+1) are obtained from truncated normal

distributions: v
(k+1)
ji ∼ ψ(β(k)Yji + ζ(k)Dji, σ

2
γ , aV;ji, bV;ji) with constraints shown in Ta-

ble S1. Note that these constraints are similar to those for draws of U(k+1), but differ
because of the many-to-one nature of matching.

S.3.2 Implementation

Implementation of the RCPS method is performed in R (R Core Team, 2017) via the rcps

package, which is available from the authors upon request and will be posted on Github
at the time of publication. This package is designed to function in conjunction with from
the RDS package (Handcock et al., 2016). For a desired number of iterations K the Markov
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Dyad Type Match aV;ji bV;ji

Peer-Rec Yes max(vj,Dj ∪ Vj,`∈O(j)) ∞

Peer-Rec No −∞
{
vj,m(j) if uij > min(Ui,m(i))

∞ otherwise

Peer Decline Yes max(Vj,`∈O(j)) ∞
Peer Decline No −∞ vj,m(j)

Table S1: Upper and lower bounds for truncated draws of vji where Vj,`∈O(j) is the set of
utilities j has for recruiters ` 6= i such that ` is in j’s opportunity set O(j). O(j) is the set
of recruiters ` ∈ R, ` 6= m(j) such that u`j > min({u`,m(`)}). vj,Dj is j’s declension utility.
m(i) is the set of peers that i is matched to and m(j) is the recruiter of j.

chain is updated as described in Algorithm S1. Note that the procedure described above
in Section S.3 is only for one wave (that is, for one bipartite network between one set of
recruiters and one set of peers). In practice, we observe multiple waves of recruitment, and
thus we sequentially apply the method where the α, β, ξ, and ζ from wave w − 1 during
iteration (k) are used as the starting values of α, β, ξ, and ζ during wave w of iteration (k).
Values of α, β, ξ, and ζ for wave 1 of iteration (k+ 1) are informed by wave nw of iteration
(k). Algorithm S1 includes this sequential application.

Inputs to the inference function are: the observed recruitment chain m; the observed co-
variate array Z; priors µα, Σα, µβ, Σβ, µξ, Σξ, µζ , and Σζ for the preference coefficients;
and the desired number of iterations K.

S.3.3 Model Selection

The RCPS model framework can include numerous covariates Z. Values of α and β for
each covariate can be examined to determine whether it seems to impact recruitment, and
thus candidate models can be compared. In particular, the posterior probability that the
coefficient is above zero for homophilous recruitment will be close to 1. Although there are
no set cut-off points for when a covariate is ‘important’ for recruitment, potential comparison
values are 0.9 and 0.95. Thus, for example, if the posterior probability that α is greater
than zero is 0.97, we would say that this covariate seems to impact recruitment. On the
other hand, if the posterior probability that α is greater than zero is 0.5, we would say that
this covariate does not seem to affect recruitment. For heterophilous recruitment, we would
consider the posterior probability that α and β are less than zero. In order to select a final
model (i.e., a final set of covariates upon which participants recruit preferentially), a larger
set of covariates can be pruned by considering their posterior probability above (or below)
zero.

To compare whether sets of covariates impact preferential recruitment, we could compare
them to the null model where α = 0 and β = 0 for all covariates. Then Bayes factors can
be used to compare the models (Gelman et al., 2004).
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Algorithm S1: Gibbs sampler for joint posterior π(α, β, ξ, ζ,U,V |m ∈M)

Input: Hyperparameters µα, µβ , µξ, µζ , µε, µγ , Σα, Σβ , Σξ, Σζ , σε, σγ ; covariates Z; matching m;
number of iterations K

Output: Joint posterior π(α, β, ξ, ζ,U,V |m ∈M)

1 initialize α
(0)
0 , β

(0)
0 , ξ

(0)
0 , and ζ

(0)
0 ;

2 α
(0)
0 ∼MVN (µα,Σα);

3 β
(0)
0 ∼MVN (µβ ,Σβ);

4 ξ(0) ∼MVN (µξ,Σξ);

5 ζ
(0)
0 ∼MVN (µζ ,Σζ);

6 for w = 1 . . . , nw do
7 initialize εw and γw;
8 εw;ij ∼ N(µε, σ

2
ε );

9 γw;ji ∼ N(µγ , σ
2
γ);

10 calculate initial values U
(0)
w and V

(0)
w ;

11 u
(0)
w;ij |α

(0), ξ(0),Uw;−{ij},Vw,m ∈M = α
(0)
w−1Xw;ij + ξ

(0)
w−1Aw;ij + εw;ij ;

12 v
(0)
w;ji |β

(0), ζ(0),Uw,Vw;−{ji},m ∈M = β
(0)
w−1Yw;ji + ζ

(0)
w−1Dw;ji + γw;ji;

13 draw initial values α
(1)
w , β

(1)
w , ξ

(1)
w , and ζ

(1)
w ;

14 α
(1)
w |U(0)

w ,m ∈M ∼MVN (µ̃
(1)
α , Σ̃α;w);

15 β
(1)
w |V(0)

w ,m ∈M ∼MVN (µ̃
(1)
β , Σ̃β;w);

16 ξ
(1)
w |U(0)

w ,m ∈M ∼MVN (µ̃
(1)
ξ , Σ̃ξ;w);

17 ζ
(1)
w |V(0)

w ,m ∈M ∼MVN (µ̃
(1)
ζ , Σ̃ζ;w);

18 k = 1

19 end
20 while k < K do
21 for w = 1, . . . , nw do
22 check = 0;
23 while check = 0 do

24 update U
(k+1)
w and V

(k+1)
w ;

25 u
(k+1)
w;ij |α

(k), ξ(k),Uw;−{ij},Vw,m ∈M;

26 ∼ ψ(α
(k)
w−1Xw;ij + ξ

(k)
w−1Aw;ij , σ

2
ε , a

(k+1)
U;w;ij , b

(k+1)
U;w;ij);

27 v
(k+1)
w;ji |β

(k), ζ(k),Uw,Vw;−{ji},m ∈M;

28 ∼ ψ(β
(k)
w−1Yw;ji + ζ

(k)
w−1Dw;ji, σ

2
γ , a

(k+1)
V;w;ji, b

(k+1)
V;w;ji);

29 if U
(k+1)
w and V

(k+1)
w reproduce the observed matching then

30 check = 1;
31 end

32 end

33 update α
(k+1)
w and β

(k+1)
w ;

34 α
(k+1)
w |U(k)

w ,m ∈M ∼MVN (µ̃
(k+1)
α , Σ̃α;w);

35 β
(k+1)
w |V(k)

w ,m ∈M ∼MVN (µ̃
(k+1)
β , Σ̃β;w);

36 ξ
(k+1)
w |U(k)

w ,m ∈M ∼MVN (µ̃
(k+1)
ξ , Σ̃ξ;w);

37 ζ
(k+1)
w |V(k)

w ,m ∈M ∼MVN (µ̃
(k+1)
ζ , Σ̃ζ;w);

38 end
39 k = k + 1;

40 end
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Variable Description a b c d e f

N Population size 2000
nv Number of covariates 1

Z N × nv matrix of covariates zi
iid∼ Bernoulli(0.5)

nc Number of coupons 3

ns Number of seeds 2 2 2 12 4 3
nw Number of waves 4 4 4 4 6 10
α Pref coef for recruiters to peers 2 -2 0 0 0.5 0.01
β Pref coef for peers to recruiters 2 -2 0 0 0.5 0.01
ξ Pref coef for recruiter abstention (-2,-2,-2) (-2,-2,-2) (-2,-2,-2) (6,6,-2) (2,2,2) (1.5,1.5,1.5)
ζ Pref coef for peer declension -2 -2 -2 -2 3.5 3.5

Table S2: Simulation input parameters producing the recruitment trees shown in Figure S3.

S.4 Simulation of Recruitment Chains

This section demonstrates a variety of recruitment chains that can be produced by altering
the simulation input parameters. Input parameters are shown in the first two columns of
Table S2. These parameters can be varied to obtain a wide range of recruitment chains,
encompassing many different types we observe in real data. Six examples are shown in Fig-
ure S3, demonstrating homophilous, heterophilous, and non-preferential recruitment with
a variety of recruitment chain shapes. The specific inputs for these recruitment chains are
given in the last six columns of Table S2. The population size, number of type of covari-
ates, and number of coupons are kept the same in these simulations to highlight the effect
of varying the values of α, β, ξ, and ζ.
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(a) Simulation: Perfect Recruitment, Perfect Homophilous Recruitment
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(b) Simulation: Perfect Recruitment, Perfect Heterophilous Recruitment
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(c) Simulation: Perfect Recruitment, No Preferential Recruitment
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(d) Simulation: Stringy Trees, No Preferential Recruitment
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(e) Simulation: Realistic Trees, Strong Homophilous Recruitment
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(f) Simulation: Realistic Trees, Weak Homophilous Recruitment
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Figure S3: The RCPS framework can be used to create a variety of recruitment chains, such
as: bushy (a,b,c), stringy (d), and realistic (e,f) trees; homophilous (a-perfect, e-strong, f-
weak), heterophilous (b), and non-preferential (c,d) recruitment. Points colored and shaped
uniquely for a covariate with 2 categories. Input parameters are given in Table S2.
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S.5 Simulation Study 1: No Preferential Recruitment

This section presents additional figures for the simulation study presented in the manuscript
where α = β = 0 (no preferential recruitment). Figure S4 shows MCMC posterior draws for
all preference, abstention, and declension parameters for each of the 7 generated recruitment
chain replicates. For each, a burn-in of 5000 iterations and a thinning interval of 20 iterations
were used, and the sampler was run until 2250 posterior draws were attained. Figure S5
shows the posterior distributions for the preference parameters α and β for each of the 7
generated recruitment chain replicates.
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MCMC Posterior Draws, No Preferential Recruitment

Figure S4: MCMC posterior draws for all preference, abstention, and declension parameters
for the case of no preferential recruitment for each of the 7 generated recruitment chains.
True values are shown as red horizontal lines.
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Figure S5: Posterior distributions for the preference parameters α and β for the case of
no preferential recruitment for each of the 7 generated recruitment chains. True values are
shown as red vertical lines.
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S.6 Simulation Study 2: Homophilous Recruitment

This section presents additional figures for the simulation study presented in the manuscript
where α = β = 0.5 (heterophilous recruitment). Figure S6 shows MCMC posterior draws for
all preference, abstention, and declension parameters for each of the 7 generated recruitment
chain replicates. For each, a burn-in of 5000 iterations and a thinning interval of 20 iterations
were used, and the sampler was run until 1000 posterior draws were attained. Figure S7
shows the posterior distributions for the preference parameters α and β for each of the 7
generated recruitment chain replicates.
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Figure S6: MCMC posterior draws for all preference, abstention, and declension parameters
for the case of homophilous recruitment for each of the 7 generated recruitment chains. True
values are shown as red horizontal lines.
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Figure S7: Posterior distributions for the preference parameters α and β for the case of
homophilous recruitment for each of the 7 generated recruitment chains. True values are
shown as red vertical lines.
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S.7 Simulation Study 3: Heterophilous Recruitment

This section presents additional figures for the simulation study presented in the manuscript
where α = β = −0.5 (heterophilous recruitment). Figure S8 shows MCMC posterior
draws for all preference, abstention, and declension parameters for each of the 7 generated
recruitment chain replicates. For each, a burn-in of 5000 iterations and a thinning interval of
20 iterations were used, and the sampler was run until 4750 posterior draws were attained.
Figure S9 shows the posterior distributions for the preference parameters α and β for each
of the 7 generated recruitment chain replicates.



Bayesian Modeling of Preferential Selection in RDS 17

α β ξ1 ξ2 ξ3 ζ

1
2

3
4

5
6

7

0 1000200030004000 0 1000200030004000 0 1000200030004000 0 1000200030004000 0 1000200030004000 0 1000200030004000

−5.0

−2.5

0.0

2.5

−5.0

−2.5

0.0

2.5

−5.0

−2.5

0.0

2.5

−5.0

−2.5

0.0

2.5

−5.0

−2.5

0.0

2.5

−5.0

−2.5

0.0

2.5

−5.0

−2.5

0.0

2.5

Iteration

V
a

lu
e

MCMC Posterior Draws, Heterophilous Recruitment

Figure S8: MCMC posterior draws for all preference, abstention, and declension parameters
for the case of heterophilous recruitment for each of the 7 generated recruitment chains.
True values are shown as red horizontal lines.
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Figure S9: Posterior distributions for the preference parameters α and β for the case of
heterophilous recruitment for each of the 7 generated recruitment chains. True values are
shown as red vertical lines.
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S.8 Re-Simulating From Posterior Medians

To assess simulation performance, we compare the original simulated recruitment chains to
those generated from new simulations using the posterior medians of ξ and ζ (as well as α
and β) as the new input values. We simulated 200 new recruitment chains for each scenario
in this manner, and compare the number of recruits each person enrolls (0, 1, . . . , nc) to the
median from each of the 7 replicates. Figure S10 shows the distribution of the re-sampled
number of recruits, with red vertical lines indicating the median from each of the replicates.
For the most part, the RCPS model performs well, although it perhaps results in ξ and ζ
values that return trees that are too stringy in a few cases.
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Figure S10: Distribution of number of recruits for new recruitment chains simulated from
posterior medians of ξ and ζ for (a) non-preferential, (b) homophilous, and (c) heterophilous
recruitment. Posterior medians from each of 7 replicates shown by red solid line.

S.9 Francophone Migrants: Additional Plots

We assess the structure of the recruitment chains simulated using the RCPS model fit for
the Francophone migrants in Rabat, Morocco. Figure S11 shows histograms of the number
of recruits per person in (a) and the number of people in each wave in (b). Despite the
visual similarity of the recruitment chains in Figure 4, the simple model does not appear to
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Figure S11: Histograms of (a) the number of recruits per person and (b) the number of
people in each wave, in 200 simulations using the posterior medians from the RCPS model
for the Francophone migrants. The red vertical lines show the true values.

capture all aspects of the recruit distribution, with too many people recruiting one or two
peers, and too few recruiting zero or three peers. This suggests a more realistic extension of
the RCPS model would be to have a separate parameter for whether a person will recruit at
all, and then if they do recruit, model the number of peers they will select as in the RCPS
model. The model does a good job at capturing the true values for small and large number
waves, but a poorer job in waves 4-6. The abstention and declension parameters are not
wave-specific (that is, we assume there is one overall parameter governing the recruitment
process), so this suggests another extension would be to allow abstention and declension to
vary based on wave to more realistically capture recruitment dynamics. Nevertheless, the
RCPS model captures the preferential recruitment observed for both living location and
network size.
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