Bayesian Mixture Modeling of the

High-Energy Photon Counts collected by the Fermi Large Area Telescope

Denise Costantin¹²³, Andrea Sottosanti³, Alessandra

R. Brazzale ³, Denis Bastieri 145 and JunHui Fan 12

 $^{\rm 1}$ Center for Astrophysics, Guangzhou University, Guangzhou 510006 China

- ² Department of Education, Astronomical Science and Technology Research Laboratory, Guangdong Province, PRC
- ³ Department of Statistical Sciences, University of Padova, via Cesare Battisti 241, Padova, Italy
- ⁴ Department of Physics and Astronomy "G. Galilei", University of Padova, via F. Marzolo 8, Padova, Italy
- 5 National Institute for Nuclear Physics, Padova Division, Padova, Italy

Address for correspondence: Denise Costantin, Center for Astrophysics, Guangzhou University, Guangzhou 510006, China.

E-mail: denise.costantin@gmail.com.

Phone: .

Fax: .

of the declared objectives of the *Fermi* LAT Collaboration. We develop a Bayesian mixture model which is capable of disentangling the high-energy extra-galactic sources present in a given sky region from the pervasive background radiation. We achieve this by combining two model components. The first component models the emission activity of the single sources and incorporates the instrument response function of the *Fermi* γ -ray space telescope. The second component reliably reflects the current knowledge of the physical phenomena which underly the γ -ray background. The model parameters are estimated using a reversible jump MCMC algorithm, which simultaneously returns the number of detected sources, their locations and relative intensities, and the background component. Our proposal is illustrated using a sample of the *Fermi* LAT data. In the analyzed sky region, our model correctly identifies 116 sources out of the 132 present. The detection rate and the estimated directions and intensities of the identified sources are largely unaffected by the number of detected sources.

Key words: bivariate exponential distribution; γ -ray photon, instrument response function; mixture model, reversible jump MCMC

Supplementary Material

Table 1 reports the complete list of the 118 sources detected by our model within the analyzed sky region which can be associated with confirmed sources present in the 3FHL catalog. Columns 2 and 3 report the longitude (l_{alg}) and the latitude (b_{alg}) of the detected source together with its mixing proportion ω (Column 4). Columns 6 and

7 report the longitude (l_{3FHL}) and the latitude (b_{3FHL}) of the associated catalog source together with its angular distance from the potential source (Column 8). Multiple matches are reported. The less likely associations are struck through. In the end, 116 components were uniquely associated with known sources within an angular distance of 1° with respect to the catalog direction.

	Detect	ed source)	Confirmed source				
ID_{alg}	l_{alg}	b_{alg}	ω	ID_{3FHL}	l_{3FHL}	b_{3FHL}	distance (°)	
1	-79.213	17.062	1.27e-04	1	-79.214	17.071	0.010	
2	-79.431	21.486	1.76e-04	2	-79.424	21.503	0.019	
3	-79.339	28.077	1.65e-04	3	-79.333	28.090	0.014	
4	-75.963	23.756	2.08e-04	4	-75.954	23.754	0.009	
5	-74.738	21.444	1.17e-04	5	-74.759	21.463	0.028	
6	-76.516	28.177	3.01e-04	6	-76.512	28.177	0.003	
7	-70.647	13.130	4.38e-04	7	-70.624	13.160	0.037	
8	-70.732	22.939	3.21e-04	8	-70.744	22.951	0.016	
9	-78.489	46.552	2.43e-04	9	-78.463	46.580	0.034	
10	-73.005	35.191	2.40e-04	10	-72.991	35.182	0.014	
11	-70.815	28.609	2.36e-04	11	-70.794	28.617	0.020	
12	-69.992	27.158	3.49e-04	12	-70.019	27.154	0.025	
13	-73.220	38.422	8.69e-05	13	-73.242	38.352	0.072	
14	-72.896	39.584	1.51e-04	14	-72.893	39.582	0.004	
15	-78.941	53.207	7.66e-05	15	-78.905	53.248	0.046	
16	-67.124	22.513	3.04e-04	16	-67.106	22.525	0.020	
17	-77.186	53.853	3.33e-04	17	-77.173	53.867	0.017	

Table 1: Complete list of the sources detected by our model in the analyzed sky region which can be associated with confirmed sources present in the 3FHL catalog. Multiple matches are reported. The less likely associations are struck through. (Continues on the next page.)

	Detect	ed source)	Confirmed source				
ID_{alg}	l_{alg}	b_{alg}	ω	ID_{3FHL}	l_{3FHL}	b_{3FHL}	distance (°)	
18	-70.094	39.286	3.34e-04	18	-70.125	39.282	0.024	
19	-68.612	38.488	7.28e-05	19	-68.617	38.511	0.024	
20	-67.647	35.762	1.76e-04	20	-67.625	35.785	0.029	
21	-74.392	58.994	6.79e-05	21	-74.390	58.964	0.030	
22	-74.632	61.261	1.03e-04	22	-74.620	61.252	0.012	
22	-74.632	61.261	1.03e-04	23	-73.808	60.449	0.906	
23	-73.789	60.438	8.24e-05	22	-74.620	61.252	0.908	
23	-73.789	60.438	8.24e-05	23	-73.808	60.449	0.014	
24	-72.350	58.730	7.71e-05	24	-72.452	58.708	0.057	
25	-65.974	37.340	1.99e-04	25	-65.984	37.345	0.009	
26	-63.854	25.248	1.34e-04	26	-63.884	25.219	0.040	
29	-63.089	27.760	2.29e-04	28	-63.092	27.773	0.013	
30	-74.132	68.629	1.57e-04	29	-74.129	68.647	0.018	
31	-66.154	48.970	2.90e-04	30	-66.148	48.973	0.005	
32	-61.595	18.017	2.78e-04	31	-61.601	18.044	0.028	
33	-61.034	13.843	4.92e-04	32	-61.013	13.831	0.023	
34	-69.981	64.385	1.90e-04	33	-69.978	64.338	0.046	
35	-76.224	74.491	2.00e-04	34	-76.229	74.488	0.003	
36	-64.457	48.374	3.59e-04	35	-64.490	48.395	0.030	
37	-78.126	76.419	1.31e-04	36	-78.108	76.417	0.005	
38	-61.220	25.382	3.04e-04	37	-61.225	25.381	0.005	

Table 1: (Continues on the next page.)

	Detecte	ed source)	Confirmed source				
ID_{alg}	l_{alg}	b_{alg}	ω	ID_{3FHL}	l_{3FHL}	b_{3FHL}	distance (°)	
39	-66.189	60.828	2.88e-04	38	-66.174	60.807	0.022	
40	-64.907	58.055	3.64e-05	39	-64.899	58.033	0.022	
41	-64.731	67.405	1.70e-04	40	-64.743	67.416	0.012	
43	-60.344	48.000	1.57e-04	41	-60.541	47.887	0.174	
44	-58.416	37.028	4.22e-04	42	-58.407	37.052	0.025	
45	-57.667	34.692	1.52e-04	43	-57.662	34.709	0.018	
48	-56.610	23.306	3.23e-04	45	-56.596	23.297	0.016	
49	-55.634	66.304	2.22e-04	46	-55.606	66.338	0.036	
50	-54.900	57.032	8.05e-04	47	-54.900	57.057	0.025	
51	-55.213	51.083	3.58e-04	48	-55.191	51.074	0.016	
52	-54.811	40.512	3.79e-05	49	-54.813	40.525	0.013	
$\frac{52}{52}$	-54.811	40.512	3.79e-05	50	-54.793	39.648	0.864	
53	-54.786	39.655	1.31e-04	49	-54.813	40.525	0.871	
53	-54.786	39.655	1.31e-04	50	-54.793	39.648	0.009	
54	-55.219	25.021	1.89e-04	51	-55.217	25.014	0.007	
55	-53.673	38.548	1.71e-04	52	-53.340	38.556	0.261	
56	-54.591	18.911	3.09e-04	53	-54.614	18.912	0.021	
57	-54.692	13.354	5.25e-04	54	-54.732	13.347	0.039	
58	-53.965	19.784	2.81e-04	55	-53.923	19.779	0.040	
59	-49.783	50.604	1.73e-04	56	-49.776	50.633	0.029	
60	-46.241	63.092	4.06e-04	57	-46.216	63.019	0.074	

Table 1: (Continues on the next page.)

	Detecto	ed source	9	Confirmed source				
ID_{alg}	l_{alg}	b_{alg}	ω	ID_{3FHL}	l_{3FHL}	b_{3FHL}	distance (°)	
63	-50.586	40.696	3.08e-04	59	-50.622	40.670	0.038	
64	-50.800	38.829	2.54e-04	60	-50.809	38.777	0.053	
65	-52.412	20.042	2.58e-04	61	-52.440	20.037	0.027	
66	-35.884	73.425	1.66e-04	62	-35.842	73.443	0.021	
67	-46.496	54.825	3.98e-04	63	-46.491	54.823	0.004	
70	-46.691	49.734	9.51e-05	65	-46.686	49.738	0.005	
71	-28.974	75.402	7.94e-05	66	-28.974	75.385	0.017	
72	-25.295	74.932	3.33e-04	67	-25.268	74.925	0.010	
73	-50.429	19.428	6.65e-04	68	-50.474	19.422	0.043	
74	-50.604	14.947	1.05e-03	69	-50.586	14.933	0.021	
76	-38.519	56.244	2.37e-04	71	-38.636	56.237	0.065	
77	-41.767	48.671	3.65e-04	72	-41.785	48.708	0.038	
78	-45.799	32.060	4.12e-04	73	-45.820	32.063	0.017	
79	-39.817	48.350	3.91e-05	74	-39.943	48.371	0.086	
80	-18.567	71.103	2.63e-04	75	-18.607	71.123	0.024	
81	-43.303	37.603	4.12e-04	76	-43.310	37.601	0.006	
82	-39.959	46.222	2.79e-04	77	-39.970	46.219	0.008	
83	-39.499	43.692	2.51e-04	78	-39.541	43.676	0.035	
84	-44.386	27.604	2.12e-04	79	-44.419	27.591	0.032	
85	-42.981	31.353	2.76e-04	80	-42.954	31.343	0.025	
86	-12.644	68.760	2.53e-04	81	-12.600	68.775	0.022	

Table 1: (Continues on the next page.)

	Detecte	ed source)	Confirmed source				
ID_{alg}	l_{alg}	b_{alg}	ω	ID_{3FHL}	l_{3FHL}	b_{3FHL}	distance (°)	
89	-44.186	21.687	1.13e-04	83	-44.192	21.691	0.007	
92	-16.649	60.996	5.16e-04	86	-16.644	60.994	0.003	
93	-33.683	40.560	3.51e-04	87	-33.648	40.558	0.027	
94	-36.402	34.710	4.49e-04	88	-36.397	34.718	0.009	
98	-24.894	50.420	2.82e-04	90	-26.110	50.288	0.787	
98	-24.894	50.420	2.82e-04	91	-24.883	50.397	0.024	
99	-33.466	34.666	2.14e-04	92	-33.475	34.670	0.009	
100	-18.395	53.657	7.91e-04	93	-18.419	53.652	0.015	
101	-23.187	48.363	3.23e-04	94	-23.209	48.340	0.027	
102	-10.044	59.321	1.78e-04	95	-10.021	59.320	0.011	
103	-28.125	40.787	1.54e-04	96	-28.085	40.832	0.054	
104	-27.335	38.843	1.33e-04	97	-27.358	38.869	0.032	
106	-34.425	26.338	4.13e-04	98	-34.811	25.58 4	0.830	
106	-34.425	26.338	4.13e-04	99	-34.431	26.335	0.006	
107	-38.564	17.260	2.96e-03	100	-38.556	17.269	0.012	
109	-33.109	26.590	1.38e-04	101	-33.277	26.865	0.313	
110	-28.356	31.372	1.48e-04	102	-28.355	31.362	0.010	
113	-35.444	18.347	9.51e-05	104	-35.443	18.342	0.005	
115	-34.814	19.327	3.21e-04	106	-34.804	19.325	0.009	
116	-24.411	36.235	5.26e-04	107	-24.451	36.243	0.033	
$\frac{115}{115}$	-34.814	19.327	3.21e-04	109	-34.35 4	18.713	0.752	

Table 1: (Continues on the next page.)

	Detect	ed source))	Confirmed source				
ID_{alg}	l_{alg}	b_{alg}	ω	ID_{3FHL}	l_{3FHL}	b_{3FHL}	distance (°)	
117	-37.862	12.311	6.31e-04	108	-37.845	12.323	0.020	
118	-34.364	18.702	1.01e-03	106	-34.804	19.325	0.750	
118	-34.364	18.702	1.01e-03	109	-34.354	18.713	0.015	
119	-10.747	48.881	4.28e-04	110	-10.775	48.937	0.059	
121	-34.207	15.710	2.78e-04	112	-34.206	15.704	0.006	
122	-30.071	20.483	1.10e-04	113	-30.088	20.533	0.052	
123	-35.599	10.837	3.40e-04	114	-35.605	10.827	0.012	
124	-16.249	36.461	7.74e-04	115	-16.267	36.493	0.035	
125	-19.494	29.499	2.76e-04	116	-19.496	29.503	0.005	
129	-28.878	17.963	3.59e-04	117	-28.131	17.402	0.907	
131	-19.307	27.574	7.94e-04	118	-19.319	27.584	0.015	
132	-21.352	24.977	3.99e-04	119	-21.336	24.986	0.017	
133	-20.429	24.405	3.60e-04	120	-20.427	24.391	0.015	
134	-17.951	20.397	1.17e-04	121	-17.964	20.372	0.027	
135	-13.307	24.073	2.18e-04	122	-13.302	24.067	0.008	
138	-12.147	24.202	2.43e-04	124	-12.159	24.174	0.031	
140	-18.869	20.649	3.45e-04	121	-17.964	20.372	0.891	
141	-17.398	$\frac{17.190}{17.190}$	2.50e-04	$\frac{125}{1}$	-17.656	$\frac{18.153}{18.153}$	0.993	
141	-17.398	17.190	2.50e-04	126	-17.410	17.177	0.018	
142	-12.483	22.281	1.40e-04	127	-12.413	22.238	0.078	
143	-12.112	20.526	3.65e-04	128	-12.087	20.538	0.026	

Table 1: (Continues on the next page.)

	Detect	ed source	2	Confirmed source				
ID_{alg}	l_{alg}	b_{alg}	ω	ID_{3FHL}	l_{3FHL}	b_{3FHL}	distance (°)	
144	-15.849	16.456	5.44e-05	129	-15.872	16.444	0.026	
145	-14.149	14.635	2.02e-04	130	-14.150	14.648	0.012	
146	-11.226	13.320	6.82e-04	131	-11.200	13.332	0.028	
147	-13.763	10.320	6.79e-04	132	-13.756	10.349	0.030	
-183	-58.190	34.996	5.55e-05	43	-57.662	34.709	0.520	

Table 1: (Continues from the previous page.)