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Address for correspondence: Marco Alfò, Dipartimento di Scienze Statistiche, Sapienza
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1 The EM algorithm for ML parameter estimation

To discuss the EM algorithm for ML estimation of parameters in the proposed flexible
approach, we start by recalling the likelihood function
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Based on this form, we may define the elements of the score function as follows:
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represent joint and outcome-specific posterior probabilities of component membership, re-
spectively. The weights for a specific outcome are simply defined by summing wig1,...,gp

over the remaining profiles; only at the E-step a n ×
∏

j Kj calculation is needed, where
the p densities and the priors are used to compute the posterior probabilities of component
membership. Once the choice for Kj , j = 1, . . . , p, has been made, for example by fitting
univariate regression models to each profile, the EM algorithm is quite simple to be im-
plemented, by adding a factor variable with Kj levels to each outcome model. According
to Karlis and Meligkotsidou (2007), we use AIC (Akaike, 1974) to choose the number of
components in univariate models, and then retain such a number in the multivariate model.
Different criteria can be used as well, with negligible impact on fixed parameter estimates.

2 Parafac approximation, additional steps for the EM algorithm

The idea is, here, to summarize the joint probabilities using a limited number of components,
q (< m), that approximate the original probability tensor at best:
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τh
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The best Parafac approximation is achieved by least squares. It is convenient to reorder
the elements of the tensor Π in a matrix by using so-called matricization (or unfolding),
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see, e.g., Kiers (2000). There exist different kinds of matricization; the so-called ‘Mode j’
matricization of Π is the matrix Π(j) of order (Kj ×K1 · · ·Kj−1Kj+1 · · ·Kp). Letting Πj ,
j = 1, . . . , p, be the matrices of order (kj × q) with generic column πjh = [πj1|h · · ·πjKj |h]′,
and T the diagonal matrix of order q with main diagonal equal to the vector τ = [τ1 · · · τq]′,
the least squares estimates are found by solving the constrained problem

min
Π1,...,Πp,T

= ||Π(j) −ΠjT(Πp � · · · �Πj+1 �Πj−1 � · · · �Π1)
′||2,

s.t. π′jh1 = 1,πjh ≥ 0, h = 1, . . . , q, j = 1, . . . , p,

T diagonal, τ ′1 = 1, τ ≥ 0,

(2.2)

where � denotes the Khatri-Rao product of matrices (columnwise Kronecker product, i.e.,
given two matrices V and W with the same number q of columns V�W = [v1⊗w1 . . .vq⊗
wq] where ⊗ is the Kronecker product of matrices) and 1 and 0 are column vectors of 1’s
and 0’s of appropriate order, respectively.

A column-wise Alternating Least Squares (ALS) algorithm can be used to find the optimal
solution. It iteratively updates every column of the matrices Πj and the diagonal of T
keeping the remaining parameters fixed.

1. Update of πjh, h = 1, . . . , q, j = 1, . . . , p.

In order to update πjh we first split the component matrix Πj into two parts, πjh and
Πj−h, where Πj−h is the matrix Πj with the h-th column removed. Setting Z′ = T(Πp �
· · · �Πj+1 �Πj−1 � · · · �Π1)

′, the loss function in equation (2.2) can then be written as

||Π(j) −Πj−hZ′−h − πjhz′h||2, (2.3)

where zh denotes the h-th column of Z and Z−h is equal to Z after removing the h-th

column. Setting Π
(j)
h = Π(j) − Πj−hZ′−h and taking into account that, for any triple of

matrices of appropriate order, vec(UVW′) = (W ⊗ U)vec(V), where the vec operator
converts a matrix into a column vector, we get the following minimization problem:

min
πjh

||vec(Π
(j)
h )− (zs ⊗ I)πjh||2,

s.t. π′jh1 = 1,πjh ≥ 0,
(2.4)

where I is the identity matrix. A solution to equation (2.4) is provided by ter Braak
et al. (2009). If πjh is reparametrized as Yv +K−1j 1, being Y a columnwise orthonormal
basis for the orthocomplement of 1 and v a vector, ter Braak et al. (2009) show that the
above minimization problem boils down to a particular Least Squares with Inequality (LSI)
problem. The LSI problem consists of minimizing

min
v
||m− Lv||2,

s.t. Cv ≥ d,
(2.5)

where L, C, m and d are matrices and vectors of appropriate order. The solution to
equation (2.5), satisfying the Kuhn-Tucker conditions, is found by Lawson and Hanson
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(1995). In particular, it can be shown that the problem solved by ter Braak et al. (2009)

and the LSI one coincide when m = vec(Π
(j)
h ) − K−1j 1, L = (zh ⊗ I)Y, C = Y and

d = −K−1j 1. Given the optimal value of v minimizing equation (2.5), the optimal value of

πjh minimizing equation (2.4) is equal to Yv +K−1j 1.

2. Update of T .

The update of T is very similar to that of πjh. It can be expressed in terms of τ bearing in
mind that T = diag(τ ), where diag is the operator creating the matrix T with the elements
of τ along the diagonal. Starting from equation (2.2), we have

min
τ

||vec(Π(j))− (Z⊗Πj)vec(diag(τ ))||2,
s.t. τ ′1 = 1, τ ≥ 0.

(2.6)

getting a regression problem between the vector of the dependent variable vec(Π(j)) and the
matrix of the explanatory variables (Z⊗Πj) with regression coefficients vec(diag(τ )). Since
diag(τ ) is a diagonal matrix of order q, vec(diag(τ )) contains q(q−1) elements equal to zero
corresponding to the off-diagonal elements of diag(τ ). It follows that q(q − 1) regression
coefficients are equal to zero and, therefore, the corresponding explanatory variables do not
play an active role and can be omitted. It is easy to see that, after a little algebra, equation
(2.6) can equivalently be written as

min
τ

||vec(Π(j))− (Z� πjh)τ ||2,
s.t. τ ′1 = 1, τ ≥ 0,

(2.7)

the solution of which is provided by ter Braak et al. (2009).

3 NMES data: univariate regression models

In this section, we consider two measures of utilization (Emr and Hosp) and define a
regression model for these outcomes, as a function of socio-economic status, observed health
status and private insurance coverage. We expect that, since the access to an emergency
room is mainly driven by potentially unpredictable events, private insurance coverage may
have a near null impact on this outcome. The opposite is true for Hosp as length of stay may
well be a function of health care needs and of the individual capacity to cover hospitalization
costs, see, e.g., Zweifel and Manning (2000). Both Emr and Hosp include a high proportion
of zero counts, corresponding to zero recorded demand over the observed time interval,
and a high degree of unconditional overdispersion. Therefore, we have defined two semi-
parametric regression models, with (conditional) Poisson distributions for the responses, log
link functions and discrete latent effects. The number of components in each profile have
been chosen using AIC; it is worth noting that similar results can be observed by using BIC
(Schwarz, 1978). Parameter estimates, derived using the R library npmlreg are reported in
Table 1 below.
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Table 1: Univariate regression models for Emr and Hosp. Parameter estimates and 90%
bootstrap confidence intervals (CI’s).

Emr Hosp

Variable Estimate CI Estimate CI

Exchlth -0.650 (-1.030-0,269) -0.694 (-1.077,-0.310)
Poorhlth 0.500 (0.304,0,696) 0.485 (0.289,0.681)

Numchron 0.212 (0.162,0,262) 0.272 (0.222,0.323)
AdLim 0.403 (0.228,0,578) 0.338 (0.157,0.519)

West 0.201 (0.016,0,386) 0.096 (-0.086,0.279)
Age 0.101 (-0.017,0.219) 0.172 (0.058,0.287)

AfroAmer 0.144 (-0.072,0.360) 0.074 (-0.165,0.313)
Male 0.042 (-0.118,0.202) 0.175 (0.015, 0.334)

Married -0.080 (-0.244,0,085) -0.030 (-0.196,0.136)
EdYears -0.017 (-0.038,0.004) 0.001 (-0.020,0.023)

Employed 0.161 (-0.092,0.414) 0.058 (-0.199,0.316)
Privins 0.078 (-0.125,0.281) 0.193 (-0.009,0.394)

Medicaid 0.197 (-0.060,0.454) 0.134 (-0.135,0.403)
ζ1 -1.085 (-2.039,-0.131) -5.321 (-8.179,-2.463)
ζ2 -3.584 (-4.552,-2.616) -1.524 (-2.492,-0.556)
ζ3 -3.247 (-4.291,-2.202)

sd(RE) 1.142 1.356

Looking the previous estimates and considering the context we are discussing, at least two
comments arise. First, both utilization measures (Emr and Hosp) may depend on common,
individual-specific, unobserved characteristics. This may be linked to health status and to
the propensity to use a given service. Therefore, it could be interesting to define a bivariate
model for the couple (Emr, Hosp) to have a measure of dependence. Second, as expected,
the choice for a private insurance scheme is barely significant only in the equation for Hosp;
however, since the choice for private insurance may depend on current individual health
status, as well as represent an anticipation of future health care demand, its choice may be
endogenous, as it may depend on unobservables that are among the drivers of utilization.

4 Parafac approximation of the joint probability tensor with q = 1

By fitting the Parafac using q = 1 to the joint probability tensor of Table 4 in the paper,
we obtain the solution reported in Table 2.

The results in Table 2 lead to the approximated estimate of the prior probability tensor
reported in Table 3. By comparing this table and Table 4 in the main text, we can conclude
that the Parafac approximation we obtain for q = 1 is extremely poor.
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Table 2: Parafac estimate (using q = 1) of Π.

Π̂1 (Emr) Π̂2 (Hosp) Π̂3 (Privins)

RE class 1 RE class 1 RE class 1

comp. 1 0.61 comp. 1 0.49 comp. 1 0.58
comp. 2 0.39 comp. 2 0.30 comp. 2 0.42

comp. 3 0.21

Table 3: Parafac approximation (using q = 1) of the latent effects’ joint probability
distribution (Π).

Privins

comp. 1 comp. 2

Emr Emr

comp. 1 comp. 2 comp. 3 comp. 1 comp. 2 comp. 3

Hosp comp. 1 0.175 0.107 0.076 0.125 0.076 0.054
comp. 2 0.110 0.067 0.048 0.079 0.048 0.034
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