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This document contains complementary material to the paper “A general framework for prediction in

penalized regression”. The proofs of Corollary 2 and Theorem 3 are given.

1 Proof of Corollary 2

Proof. Let us consider the proof for different penalty orders.

o Differences of order 1.
Suppose a difference matrix with first order penalty D of dimensions (¢y — 1) X ¢y,

o |
—
| =
—
- o
o o
o o
o o
o o

v
i
I
—
!
Q
[
Il
[e=]
|
_
_
o
o
o

where D1 has dimension ¢, x ¢, with ¢, the additional number of parameters in 8, and D, has dimension
Cp X Cpt

(1 o o o 0]
1 1 0 o0 0
0 o 0 -1
0 -1 1 0 0
0 0 - 0
D, = C D,=|0 0 -1 1 0 - 0|
o 0 0 -1 1 0
00 -~ 0 0 .
lo 0o 0o o0 0 -1 1]

Then, the additional vector of coefficients in (2.9) is:
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Therefore, using differences of order 1 the new coefficients are equal to the last coefficient.

o Differences of order 2.
Suppose a difference matrix with second order penalty D of dimensions (¢4 — 2) X ¢4,
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where D; has dimension ¢, x ¢, with ¢, the additional number of parameters in 6, and D has
dimension ¢, X ¢:

(1 o0 0 0 0
—2 1 0 0 0
0 1 -2
1 2 1 0 0 0
0o .- 0 1
D= . | D= 1 -2 1 0 0
PR 0o 1 -2 1 0
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lo 0o o 0o 1 -2 1]
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Therefore, using differences of order 2 the new coefficients are a linear combination of the two last
coefficients obtained after fitting the observed data.

e Differences of order 3.
Suppose a difference matrix with third order penalty, D of dimensions (¢4 — 3) X ¢4,

-1 3 -3 1 o0 0
0 -1 3 -3 1 0
D,=|0 0 -1 3 -3 1 0
06 0 0 0 0 O -1 3 -3 1
In this case, D1 and D5 are:
0 0 -1 3 -3 10 0 0
0 0 0 -1 3 -3 0 0
D, = |0 0 0 0 1| p,—|3 -3 1 0 0
0 0 0 0 0 0 0 0 0 0 -1 3 -3 1



Therefore, by (2.9):
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in this case, the new coefficients are a linear combination of the last three coefficients obtained after

fitting the observed values. The prediction is a quadratic polynomial. O

2 Proof of Theorem 3

Proof. Since with the transformation matrix (3.10) the extended fixed and random parts are the same in
both methods, we just need to show that the fixed and random effects are equal in both methods.

Let us compute the covariance matrix G of the augmented random effects a4, (3.9):

G G,

G =(2,D\DQ )" =
Gpo Gpp

D Q. is a squared matrix, so the inverse of (D, ) D Q. )~ lis

/
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(D4+924,) D 2y,) 7" = (D1Q4,) " (D1Q2y,) = (D4Qy,) H(D1Q4,) 7.

Using Lemma 8.5.4 of Harville| (2000), we have that:
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. |pa, o (DQ,) ! 0
(D+Q+r) = =
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Therefore,
G=1I G, =-QD, G,=-D9Q, G,,=1I+DQQ D),

Notice that its inverse is:
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Now that we know G, we just need to compute V_T_ to know the expression of the extended fixed effects.



We have that,
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Hence, we just need to know J;. Applying Theorem 8.5.11 given in [Harville (2000):
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and, applying Theorem 18.2.8, given in [Harville| (2000)) to compute J:

Ji = oiI —o%I(BR,) (621 + BQ,021(BR,) ) 'BQ,0i1

= 021 —(02)*(BR,) (¢*I + BQ,021(BR,) ) 'BR,.
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By Theorem 18.2.8 given in Harville (2000)),
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As we have proved that V', = it is straightforward to show that 8 = 3.
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Moreover, by the extended mixed model approach we have that,
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As we wanted to show solutions given by extended mixed model approach and mixed model approach
are the same.

Let us prove that the variance components (02, 02) that maximize the approximate restricted maxi-
mum likelihoods (3.11) and (3.12) are equal. Consider the parts of both expressions as follows:

1 1 - 1 _
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Part 1 Part I Part III
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since V, = , it is straightforward to prove that Part II and Part IIT of both restricted
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maximum likelihoods are equal. As V, # V, Part I of (3.11) and (3.12) are not equal, but its derivatives
with respect to the parameters (02, 02,) are equal:
Derivatives of Part I with respect to o2:
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