
Appendix 1. Directed Acyclic graphs

Below we show the directed acyclic graphs (DAGs) of the two models spec-
ified above. To prevent the graphs from becoming too cluttered we have
omitted a few of the intermediate deterministic nodes. In the graphs i is the
(loop) index of the individuals, j of the time points and k of the drugs.

Compartment model

The compartment model for the jth response of the kth drug formulation
of the ith individual is given by

yijk = exp(lKaik+lKeik−lClik)
[exp(−elKeiktijk)− exp(−elKaiktijk)]

elKaik − elKeik
+εijk,

(1)
where yijk be the kth response at the time tijk of individual i (for each
i = 1, . . . , n, j = 1, . . . ,mi and k = 1, . . . ,K); lKaik = lKak +γi1k, lKeik =
lKek+γi2k and lClik = lClk+γi3k; lKak, lKek and lClk are the fixed-effects
related to the k-th response; γi1k, γi2k and γi3k are the respective random
effects. Here, γi = (γ>i1, . . . ,γ

>
iK)> and γik = (γi1k, γi2k, γi3k)

> is the vector
of random effects related to the k-th response of the i-th individual for each
k = 1, . . . ,K and i = 1, . . . , n. We model γi = bTi ξ where bi ∼ N(0,Σb)
and the elements of xi are i.i.d. and uniformly distributed on [0, 100]. The
residual random errors εijk ∼ N(0, σ2k) are assumed to be independent of
each other and of the random effects.
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Figure 1: Directed acyclic graph for the compartment model. Hyperparam-
eters were omitted.

MSITAR model

The multivariate MSITAR model is given by:

yijk|γMi,βk, σ
2
k ∼ N(exp(γi2k)[T

>
ijkβk], σ

2
k),

Tijk = B(exp(γi3k)[tijk + min(γi1k, 0)]),
(2)

where yijk be the kth response at the time tijk of individual i. Tijk is a
matrix with bases of cubic splines for the kth response of the individual i
at time j, βk = (βk1, . . . , βkL)T is the vector of spline coefficients related
to the k-th response (here L denotes the degrees of freedom of the spline),
γik = (γ1ik, γ2ik, γi3k)

> is the vector of random-effects for i = 1, . . . , n; j =
1, . . . ,m. We model γ = biξ with bi ∼ N(0,Σb) and the elements of ξ are
uniformly distributed on [0, 100].

yijk|γMi,βk, σ
2
k ∼ N(exp(γi2k)[T

>
ijkβk], σ

2
k),

Tijk = B(exp(γi3k)[tijk +min(γi1k, 0)]),
(3)

where yijk be the kth response at the time tijk of individual i. Tijk is a
matrix with bases of cubic splines for the kth response of the individual i
at time j, βk = (βk1, . . . , βkL)T is the vector of spline coefficients related
to the k-th response (here L denotes the degrees of freedom of the spline),
γik = (γ1ik, γ2ik, γi3k)

> is the vector of random-effects for i = 1, . . . , n; j =
1, . . . ,m. We model γ = biξ with bi ∼ N(0,Σb) and the elements of ξ are
uniformly distributed between 0 and 100.
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Figure 2: Directed acyclic graph for the MSITAR model. Hyperparameters
were omitted.

Appendix 2. JAGS code

In this appendix we give the JAGS code of the two models that we compared.

2.1 Compartment model

The listing below details the compartment model in JAGS. We called JAGS
from R using the jagsUI library (which allows us to run several chains in
parallel). As explained in section 3.1 of the main text the gammas and phis
are not identified. We therefore define ke as the lowest of the two random
effects and ka as the highest. Note that a few of the deterministic nodes we
use in the program to not occur in the main text. They mainly function to
make the program clearer and to prevent some lines from becoming too long.
Like in the main article we use i ∈ 1 . . . n as an index of the individuals,
j ∈ 1 . . .m as an index for the measurement time and k ∈ 1 . . .K as the index
of the drug. lKa1, lKe1, . . . , lCl2 were renamed to beta1[1], beta1[2],
. . . , beta2[3] because JAGS does not allow the distinction between different
symbols by using different numbers of indices. In this JAGS code m, does
not depend on the individual as the data is balanced. Note that the number
of drugs K is hard-coded as two. Also the limit of detection is hard-coded.

Listing 1: Compartment model

model{
for ( i in 1 : n) {
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b [ i , 1 : 6 ] ∼ dmnorm(mu.b [ 1 : 6 ] , tau .b [ 1 : 6 , 1 : 6 ] )
for ( r in 1 : 6 ){

gammas [ i , r ] ← b [ i , r ] ∗ x i [ r ]
}
for ( k in 1 : 2 ){

lKe [ i , k ] ← min( phi1 [ i , k ] , phi2 [ i , k ] )
lKa [ i , k ] ← max( phi1 [ i , k ] , phi2 [ i , k ] )
ke [ i , k ] ← exp ( lKe [ i , k ] )
ka [ i , k ] ← exp ( lKa [ i , k ] )

}
phi1 [ i , 1 ] ← beta1 [ 1 ] + gammas [ i , 1 ]
phi2 [ i , 1 ] ← beta1 [ 2 ] + gammas [ i , 2 ]
phi3 [ i , 1 ] ← beta1 [ 3 ] + gammas [ i , 3 ]
phi1 [ i , 2 ] ← beta2 [ 1 ] + gammas [ i , 4 ]
phi2 [ i , 2 ] ← beta2 [ 2 ] + gammas [ i , 5 ]
phi3 [ i , 2 ] ← beta2 [ 3 ] + gammas [ i , 6 ]

} # for ( i in 1 : n)
tau .b [ 1 : 6 , 1 : 6 ] ∼ dwish (6 ∗ Omega [ , ] , 6)
for ( j in 1 :m){

for ( i in 1 : n){
for ( k in 1 : 2 ){

observed [ i , j , k ] ∼ d i n t e r v a l ( y [ i , j , k ] , 2)
y [ i , j , k ] ∼ dnorm(mu[ i , j , k ] , tau [ k ] ) #data model : the l i k e l i h o o d
mu[ i , j , k ] ← exp ( lKe [ i , k]+lKa [ i , k]−phi3 [ i , k ] ) ∗
( exp(−ke [ i , k ]∗ time [ j ])− exp(−ka [ i , k ]∗ time [ j ] ) ) /
( ka [ i , k]−ke [ i , k ] )
r e s [ i , j , k ] ← y [ i , j , k ] − mu[ i , j , k ]

} # for ( k in 1 :2 )
} # for ( i in 1 : n)

} # for ( j in 1 :m){
for ( k in 1 : 2 ){

tau [ k ] ∼ dgamma(0 .001 , 0 .001 )
}
for (u in 1 : 3 ){

beta1 [ u ] ∼ dnorm(0 , 0 .0001 )
beta2 [ u ] ∼ dnorm(0 , 0 .0001 )

}
for ( r in 1 : 6 ){

x i [ r ] ∼ duni f (0 , 100)
}

}

2.2 MSITAR model model

Now we present the SITAR model. In this model Bas represents the re-
stricted cubic spline basis that is evaluated on a fine grid of values from R.
This is done by a modified version of the ns function from the R splines
package. From which the lines that apply the restrictions on the spline basis
are replaced by the restrictions that are detailed in the paper. This modified
ns function is available from the GitHub page of the first author (https:
//github.com/stenw/FlexibleBioequivalence). The interp.lin func-
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tion now interpolates between those values.

Listing 2: SITAR model

model{
#sub j e c t s p e c i f i c e f f e c t s
tau .b [ 1 : 6 , 1 : 6 ] ∼ dwish (6 ∗ Omega [ , ] , 6)
for ( r in 1 : 6 ){

x i [ r ] ∼ duni f (0 , 100)
}
for ( i in 1 : n) {

b [ i , 1 : 6 ] ∼ dmnorm(mu.b [ 1 : 6 ] , tau .b [ 1 : 6 , 1 : 6 ] )
for ( r in 1 : 6 ){

gammas [ i , r ] ← b [ i , r ] ∗ x i [ r ]
}
s h i f t 1 [ i ] ← min(gammas [ i , 5 ] , 0)
s h i f t 2 [ i ] ← min(gammas [ i , 6 ] , 0)
for ( j in 1 :m){

x [ i , j , 1 ] ← exp (gammas [ i , 1 ] ) ∗ ( time [ j ] + s h i f t 1 [ i ] )
x [ i , j , 2 ] ← exp (gammas [ i , 2 ] ) ∗ ( time [ j ] + s h i f t 2 [ i ] )
mu[ i , j , 1 ] ← exp (gammas [ i , 3 ] ) ∗
inprod ( beta1 [ 1 : L ] , B[ i , j , 1 :L , 1 ] )
mu[ i , j , 2 ] ← exp (gammas [ i , 4 ] ) ∗
inprod ( beta2 [ 1 : L ] , B[ i , j , 1 :L , 2 ] )
for ( k in 1 : 2 ){

y [ i , j , k ] ∼ dnorm(mu[ i , j , k ] , tau [ k ] )
r e s [ i , j , k ] ← y [ i , j , k ] − mu[ i , j , k ]
observed [ i , j , k ] ∼ d i n t e r v a l ( y [ i , j , k ] , 2)
for ( l in 1 :L){

B[ i , j , l , k ] ← i n t e r p . l i n ( x [ i , j , k ] , gr id , Bas [ , l ] )
} # for l

} # for k
} # for j

} # for i
for ( k in 1 : 2 ){

tau [ k ] ∼ dgamma(0 .001 , 0 .001 )
}
for ( l in 1 :L){

beta1 [ l ] ∼ dnorm(0 , 0 .0001 )
beta2 [ l ] ∼ dnorm(0 , 0 .0001 )

}
}
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Appendix 3. Sampling procedures in JAGS

To obtain samples from the posterior of our models we use the program
‘Just another Gibbs sampler’ (JAGS) by Martyn Plummer (Plummer, 2003).
This program can been seen as a reimplementation of WinBUGS in C++,
although there are some differences. A big advantage of BUGS-like soft-
ware, is that it makes sampling from any model relatively easy as one only
needs to specify the model and the likelihood, the rest is done by the pro-
gram. JAGS will then determine the directed acyclic graph, derive the full
conditionals and find suitable samplers. The only disadvantage of JAGS or
similar software is its black-box nature, i.e. the use is not fully aware how
the sampling is done. Below we give details what samplers JAGS has used
for the different full conditionals of our models. JAGS converts the program
text to a graph of nodes storing information about the distribution of each
variable and the resations that exist between them. This graph of nodes is
traversed and for each node a suitable sampler is chosen.

The samplers chosen for the MSITAR model are as follows: For the
residual variances τ conjugate gamma samplers are used.

τk | rest
iid∼ Gamma

ατ + 1
2

∑
i

mi, βτ + 1
2

∑
i,j

{yijk − µijk}2


where n is the number of individuals and m is the number of measurement
times so nm is the total number of observations for either drug and

µijk = exp(bi2kξ2)Tijkβk

is the expected value under the MSITAR model. Here orderi is the covariate
that denotes the order in which the drugs are given and ατ and βτ are the
prior shape and rate parameters for the gamma prior of the τs. For the fixed
effects β conjugate normal samplers are used:

β | rest ∼ N(µkp, τ
−1
βkp

)

where µkp = τ−1βkpτ
∑
ij

A2
ijkpBijkp,

τβkp = τβkp +
∑
ij

B2
ijkpτk,

Aijkp = Yijk − exp(bi2k)
∑
l 6=p
βl(Tijk)l,

Bijkp = exp(bi2k)βl(Tijk)p

with (Tijk)l the lth element of vector Tijk and τβkp the prior precision of βkp.
Aijkp can be thought of as the response when we have removed the effect of
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the other βs, while Bijkp is the effect that a unit increase of the coefficient
has on this outcome. For the precision of the random effects a conjugate
Wishart sampler is used, i.e.

Tb | rest ∼W

(
δ + n,Ω +

∑
i

bib
T
i

)
.

where δ is the prior number of degrees of freedom, I the number of individ-
uals and Ω the prior variance matrix.

For the random effects b, a Metropolis sampler is used. Given the other
parameters bi is sampled from a distribution proportional to:

exp(−1

2
b′iT

−1
b bi)

∏
jk

g(yijk|βk, τk, bi, ξ)

Here Tb is the precision of the bs and we use g(yijk|βk, τkbi, ξ) for the density
of the MSITAR model conditional on the random effects, that is:√

τk
2π

exp[−1
2(yijk − µijk)2τk]

(4)

For the auxiliary parameters related to the random effect variances ξ
and the censored blood concentrations yijk, slice samplers are used. Given
all other prameters ξ is sampled from a distribution proportional to:∏

ijk

g(yijk|βk, τk, bi, ξ),

(5)

Finally given the other parameters we can sample the elements of yijk
that are censored from:

τkφ(τk(yijk − µijk))
Φ(τk(2− µijk))

where φ(x) is the pdf and Φ(x) is the CDF of a standard normal.
In the parametric model most sampler types are identical to the corre-

sponding ones chosen in the MSITAR model, only for the β’s slice samplers
are chosen instead of a conjugate normal sampler as the response is not
linear in the fixed effects in this model.

Sampling now begins with an adaptive phase in which samplers that
require it, can change their behavior. For the Metropolis sampler this means
that JAGS keeps track of a running mean of the acceptance rate, giving a
larger weight to more recent iterations, and the variances of the proposal
distribution are adjusted to aim for a target acceptance rate of 0.234. For
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the slice samplers we similarly keep track of a weighed average of the jumps
and the step size (the tuning parameter that controls the initial estimate
of the width of the slice) is adjusted accordingly so fewer steps will have
to be taken to find the correct slice of the slice. After the adaptive phase
we continue the burn-in. When we are convinced we are sampling from
the posterior we start storing the sampled values to be used in our further
analyses.

Appendix 4. Residual plots

In this section we provide the (marginal) residuals plots of the two models.
They are defined as:

yijk − exp(lKaik + lKeik − lClik)
[exp(−elKeiktijk)− exp(−elKaiktijk)]

elKaik − elKeik
,

for the compartment model and as

yijk − (exp(γi2k)[T
>
ijkβk]

for the MSITAR model. The heteroskedasticity is clearly visible.
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Figure 3: Residual plot for the MSITAR model
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Figure 4: Residual plot for the compartment model
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