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1 Simulation study: all results

Figures from 1 to 4 show results from all scenarios of the simulation study described

in section 6 of our paper.

2 Details on implementing the PC prior for τβ in INLA

The PC prior for the precision of a GMRF (Simpson et al., 2014) can be implemented

in INLA Rue et al. (2009). The SD prior by Klein and Kneib (2015) is the PC

prior for the IGMRF precision τβ (see equation 2.1 in the paper), thus it can also

be implemented within INLA. The function get theta() in the sdPrior R package

(Klein, 2015) computes the scaling parameter (here denoted as θ′) of the PC prior

for the variance σ2

β = τ−1

β . Recall, the PC prior for σ2

β is a Weibull with shape 1

2
and

scaling parameter θ′ (Klein and Kneib, 2015),
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As a note, in our simulation setting, we computed θ′ corresponding to α and c (the

parameter of the SD prior) for both design K = 20 and K = 30, using n = 20. In our

experience, using n = 50 and K = 30, computation with get theta() was somehow

slow, thus we decided to compute θ′ for both designs (K = 20 and K = 30) by setting

n = 20. As pointed out by Klein and Kneib (2015), computation of θ′ is stable for

changing n (where n is the number of evaluation points over the covariate domain),

meaning that θ′ does not vary substantially for n > 1 and it would be sufficient to use

a B-spline basis matrix with only one row, i.e. n = 1, as an input for get theta().

Klein and Kneib (2015) also report exemplary values for c = 3 computed with n = 1,
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using a B-spline design with 22 inner knots and cubic B-splines.

The PC prior for the precision τβ is a Gumbel(1/2, θ) type 2 distribution:

πPC(τβ) =
θ

2
τ
−3/2
β exp

(

−θ/
√
τβ
)

, (2.1)

Once θ′ is computed (using get theta()), then the scaling parameter of the PC

prior (2.1) is obtained as θ = θ′−1/2. In INLA, the PC prior (2.1) is specified through

parameters α ∈ (0, 1) and u = − log(α)/θ. The interpretation of (u, α) is that

Pr(σβ > u) = α, u > 0, α ∈ (0, 1).

Therefore, the SD prior with scaling parameter θ′ can be implemented in INLA by

setting u = − log(α)/θ′−1/2.

The PC prior for degrees of freedom, πPC(d), with parameters α and U (see section

4.1 in our paper) can be implemented in INLA only when τǫ is known. Given d(·|τǫ),

the mapping conditional on the noise precision τǫ, to implement the induced PC prior

for degrees of freedom we need to set u = 1/
√

d−1(U |τǫ). Finally, given an SD prior

with parameters c and α (and given the associated scaling parameter θ′), one can

compute the implied PC prior for degrees of freedom, conditional on τǫ. This prior

will have upper bound equal to U = d(1/u2|τǫ), where u = − log(α)/θ′−1/2 (entries in

table 1 were calculated in this way).

3 The joint prior in action with simulated data

We illustrate the joint prior in action with a simulated dataset, from each of the

following three scenarios:

• Scenario 1 : yi = 5+xi+0.2x2

i +0.3x3

i+ǫi, with ǫi ∼ N(0, 0.01−1) and xi ∈ (0, 5);
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High noise (τǫ = 0.25) Medium noise (τǫ = 1) Low noise (τǫ = 5)

B-spline design c = 1.5 c = 2 c = 3 c = 1.5 c = 2 c = 3 c = 1.5 c = 2 c = 3

n = 20; K = 20 2.72 2.99 3.41 3.41 3.78 4.36 4.54 5.08 5.89

n = 50; K = 20 3.11 3.44 3.95 3.95 4.40 5.10 5.31 5.95 6.90

n = 20; K = 30 2.70 2.95 3.44 3.39 3.75 4.43 4.54 5.06 6.04

n = 50; K = 30 3.09 3.40 4.00 3.93 4.37 5.20 5.34 5.98 7.16

Table 1: Implied degrees of freedom, d, for the SD prior. The entries in the table refer

to the upper bound, U , for d, obtained by assuming an SD prior with parameters c

and α = 0.01, in the different simulation scenarios. The computation of U involves

the use of the sdPrior R package (Klein, 2015).

• Scenario 2 : yi = cos(xi) + ǫi, with ǫi ∼ N(0, 1) and xi ∈ (0, 2π);

• Scenario 3 : yi = 2.5+sin(xi)+ǫi, with ǫi ∼ N(0, 10−1) and xi ∈ (0, 0.3)∪(0.7, 1)

In all scenarios we use a relatively small sample size n = 50. In the first and second

scenario, covariate values are uniformly scattered over the covariate domain. In the

third scenario, the covariate values are not uniform, with a gap of observations in the

middle of the domain; the aim is to verify whether the PC prior works as expected in

sparse data cases. The simulated datasets and the true curves are reported in Figure

5.

We fit model (4) to (7), see the paper section 5, to each of the three datasets, with

K = 30 cubic B-splines and an IGMRF of order 2 on β, using algorithm 1 (see the

appendix of the paper). We are interested in assessing the fit for different priors using

different upper bounds U = {2, 4, 6}, while keeping a small probability α = 0.01 for

the tail event.
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Results are reported in Figure 5, with colours indicating the fit associated to the

different upper bounds. Setting U = 2, with small probability α = 0.01, means that

any deviation from the base model is hugely penalized at prior. Indeed, this choice

forces the fit towards a linear trend (red line) in all three scenarios. This demonstrates

that the PC prior works as expected: when the base model is over-weighted and no

chance is given to more flexible models, the posterior is dragged towards the base

model. Setting U = 4 and U = 6 gives a more flexible prior, allowing for larger

deviations from the base model. In all three panels in Figure 5, the shape of the

fitted smooth functions obtained by setting U = 4 or U = 6 (green and blue lines)

resembles the true curves (black dashed lines). In general, if the true model depicts a

complete cycle, such as in scenarios 2 and 3, a PC prior with an upper bound of 6 or

more degrees of freedom should roughly capture it. Finally, in scenario 3 the smooth

function is estimated at unobserved covariate values. The shape of the fit inside the

gap depends on the order of the IGMRF prior on β (Eilers and Marx, 2010); for

instance, a first order IGMRF would attempt to fit a constant inside the gap, while a

second order one would fit a line; indeed, in the lower panel of Figure 5, we see a red

line across the gap when setting U = 2. Basically, the PC prior works as expected,

regardless of the presence of large gaps of observations over the covariate domain.

The only issue we need to take care about in scenario 3 is that some B-splines might

be poorly supported resulting in singularity of BTB; this can be solved by adding a

small ǫ to the diagonal of BTB when computing the degrees of freedom using formula

(2.2) in the paper.
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Figure 1: Simulation results: log(MSE) for f1 (left panels) and f2 (right panels),

in presence of high noise (τǫ = 0.25, top panels), moderate noise (τǫ = 1, middle

panels), low noise (τǫ = 5, bottom panels), sample size n=20, K=20. In the legend

on the right, label “G” indicates the Gamma prior; “PC d” indicates our PC prior for

degrees of freedom (joint prior), with α = 0.01 and U = {2, 3, 5, 7, 10}; “SD” denotes

scale dependent prior with α = 0.01 and c = {1.5, 2, 3}.
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Figure 2: Simulation results: log(MSE) for f1 (left panels) and f2 (right panels),

in presence of high noise (τǫ = 0.25, top panels), moderate noise (τǫ = 1, middle

panels), low noise (τǫ = 5, bottom panels), sample size n=20, K=30. In the legend

on the right, label “G” indicates the Gamma prior; “PC d” indicates our PC prior for

degrees of freedom (joint prior), with α = 0.01 and U = {2, 3, 5, 7, 10}; “SD” denotes

scale dependent prior with α = 0.01 and c = {1.5, 2, 3}.
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Figure 3: Simulation results: log(MSE) for f1 (left panels) and f2 (right panels),

in presence of high noise (τǫ = 0.25, top panels), moderate noise (τǫ = 1, middle

panels), low noise (τǫ = 5, bottom panels), sample size n=50, K=20. In the legend

on the right, label “G” indicates the Gamma prior; “PC d” indicates our PC prior for

degrees of freedom (joint prior), with α = 0.01 and U = {2, 3, 5, 7, 10}; “SD” denotes

scale dependent prior with α = 0.01 and c = {1.5, 2, 3}.
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Figure 4: Simulation results: log(MSE) for f1 (left panels) and f2 (right panels),

in presence of high noise (τǫ = 0.25, top panels), moderate noise (τǫ = 1, middle

panels), low noise (τǫ = 5, bottom panels), sample size n=50, K=30. In the legend

on the right, label “G” indicates the Gamma prior; “PC d” indicates our PC prior for

degrees of freedom (joint prior), with α = 0.01 and U = {2, 3, 5, 7, 10}; “SD” denotes

scale dependent prior with α = 0.01 and c = {1.5, 2, 3}.
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Figure 5: The joint prior in action with simulated data. The three panels report the

fit of the P-spline model with the joint prior (as described in section 5 of the paper),

with K = 30 cubic B-splines and an IGMRF prior of order 2 on β; the PC prior for

degrees of freedom is scaled according to U = {2, 4, 6} and α = 0.01. In each panel,

the fit corresponds to the linear base model when U = 2. When the PC prior defines

larger upper bounds (e.g., U = 4, U = 6) the fit resembles quite well the true curve.
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