
Supplement for Semiparametric frailty model for
clustered interval-censored data
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1 Introduction

This document contains supplementary materials for the article of the same title submitted
for publication to Statistical Modelling: An international journal. Notation not defined in
this document is defined as in the main paper. Section 2 presents some details about the
MCMC, e.g. the frequentist density estimation procedure from interval-censored data and
some strategies for improving mixing and convergence of the chains, that are not addressed
in the main paper. Section 3 provides further information on an extensive simulation study
while Section 3.1 presents some sensitivity analysis for the considered prior distributions.
Section 4 provides some details a data set from Signal Tandmobiel R© study.

2 MCMC

MCMC is an important tool for estimating statistical models. However, especially with com-
plex problems, MCMC can require massive computing resources and converge too slowly.
In the following sections, we present various useful approaches in order to improve mixing
and convergence of the chains.
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2.1 Initialization

Starting the chains at good initial values fasten convergence. Usually, these could be ob-
tained from restricted frequentist models as described in the following. The initial state of

the chain ϑ(0) =
(
φ(0), τ(0), ξ(0), β(0), z(0), α(0)

)T
is chosen as follows: First, a value for φ(0)

can be obtained using the frequentist density estimation procedure (described in detail in
Section 2.2) (Çetinyürek-Yavuz and Lambert, 2011). Then, we define τ(0) as the value of τ
yielding the smallest BIC for different values taken in a grid. ζ(0) is taken as the proportion
of pseudo-counts corresponding to small bins located below tcens. In accordance with the
estimation of the spline coefficients, we start by ignoring possible covariate effects: β(0) = 0.
We can obtain z(0) from a gamma frailty model applied on data resulting from mid-point
imputation, where the estimated variance is used for α(0).

For the nonparametric specification of the frailty, the initial values of the chain ϑ are chosen
along the same lines as described for the parametric frailty model, except for (φ∗

(0), τ
∗
(0)).

For obtaining an initial estimate of the frailty density, we also applied the same frequentist
procedure as described in Section 2.2. However, as frailty is not observed directly, initial
values for the latent frailty terms need to be obtained. It is made in two steps: we first
fit a parametric (gamma or log-normal) frailty model using midpoint imputation for the
interval-censored data. Then, using the estimated frailty terms as if they were actually
observed, a value for φ∗

(0) can be obtained from the frequentist procedure after obtaining an
approximation for the density of z∗(0). Similarly, τ∗(0) is defined as the value of τ∗ evaluated
on a grid yielding the smallest BIC.

2.2 Frequentist estimation of baseline density

Initial values of the spline coefficients and penalty parameters can be obtained using the
naive frequentist models. In this spirit, we shall explain a frequentist density estimation
procedure from time-to-event data when the covariates and the possible heterogeneity are
ignored (β = 0, bg = 1 (or z = 0)). We start by partitioning the support of t into small bins
(more than 100 small bins of equal width) for obtaining an accurate estimate of the density
for time-to-event data. Then, following an approach similar to Eilers and Marx (1996) we
calculate the number of observations in each small bin, namely the pseudo-counts. These
pseudo-counts, which are calculated from the C matrix of the composite link model defined
in Eilers and Marx (1996), are later used to build the density estimate. The relationship
between the intervals (lgj , rgj) and the small bins is provided by a GxIxng array C = [cgji]
such that cgji = 1 if the ith small bin Ii ⊂ (lgj , rgj) and 0 otherwise. In this spirit, for cluster
g, each element of a row in the C matrix is divided by the sum of the elements in that row
(Cgj. =

∑
iCgji). The so-obtained numbers, Wgji = Cgji/Cgj., provide the contribution of

the concerned observation in cluster g (e.g. a patient for a multicenter clinical trial) for
each small bin partitioning (a, tcens). Then, the contributions of each observation for the
ith small bin, Ii, are summed over all observations (W..i =

∑
g

∑
j Wgji) and rounded to the

nearest integer value yi in order to get the pseudo-count for that small bin. Note that πi
denotes the probability to have an event time in Ii, then the likelihood for these pseudo-
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counts is proportional to
∏I

i π
yi
i . Alternatively, the well known link between the Poisson

and the multinomial distributions suggests to assume that the pseudo-counts, yi, have a
Poisson distribution with mean µi = πiy+ conditional on the total number of observations
y+ =

∑I
i yi. Using a rich B-spline basis as regressors in a log-linear model for the mean,

one obtains the likelihood

L(φ|y) =

N∑
i=1

yi log(µi)−
N∑
i=1

µi,

where log (µi) = ηi =
∑K

k=1 φkbk(ui). Then, by subtracting the 2nd order penalty (say) and
a small ridge penalty from L(φ|y), one obtains the penalized log likelihood function

Lp(φ|y, τ) = L(φ|y)− τ

2
φ′Pφ,

where φ′D′Dφ =
∑

k (φk − 2φk−1 + φk−2)
2 and P = D′D + εI. The function Lp can be

optimized by solving the score equations BT (y − µ) = τPφ, using iteratively reweighted
least squares (IRWLS): iteratively solve (for φ)

(BT W̃B + τP )φ = BT W̃ (y − µ̃) +BT W̃Bφ̃,

where W̃ is a diagonal matrix with elements µi(φ̃) and φ̃ and µ̃ are current approximations
to the solution. The variance-covariance matrix for the estimated spline coefficients φ is
given by (at convergence),

Σ0 = (BTWB + τP )−1. (2.1)

More detailed information can be found in Eilers and Marx (1996). Information criteria such
as AIC or BIC could be used for choosing the initial optimal (plausible) value of the penalty
parameter τ . In our experience, BIC is preferable to AIC as AIC tends to undersmooth the
target curve, which was also mentioned by other authors (Strasak et al., 2009).

2.3 Automatic tuning of the algorithm

Good acceptance rates can be achieved via a careful choice of the standard deviation δh in
the generation of proposals in a Metropolis algorithm. For an optimal use of Metropolis
algorithm, it is recommended to tune the acceptance probability to approximately 0.44 in
one dimensional space decreasing to 0.23 in high dimensional spaces (Gelman et al., 1996;
Roberts and Rosenthal, 2001). Let δ denote the tuning parameter of interest. The value of
δ at iteration m+ 1 can be adjusted using the value at iteration m using (with η = 0.44)

√
δm+1 = h

(√
δm + γm

(
α(θ(h),θ(h−1))− η

))
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with

h(x) =


ε if x < ε
x if x ∈ (ε, A)
A if x > A

where ε is a very small number (say 0.0001) and A a large one (say 10000). If the targeted
acceptance level is not achieved, these constants should be changed. The series {γm} is a
non-increasing sequence of positive real numbers such that |γm − γm−1| ≤ m−1. Possible
choices for γm are 10

m or 1
m . Practically, the MCMC algorithm is run for a few hundred

iterations with the δm’s automatically updated to achieve the targeted acceptance rate
(Atchadé and Rosenthal, 2005). Then, the last value of δm in the so-generated chain can
be used in a non-adaptive version of the modified Metropolis algorithm to produce the long
chain(s) that will be used for inference.

2.4 Reparametrizing the posterior

The mixing of the chain could be improved by using a Metropolis algorithm on a re-
parametrized posterior (Lambert, 2007). In this sense, one can use an approximation to the
2nd order dependence structure of the conditional posterior. The variance covariance ma-
trix, Σ0, of the penalized maximum likelihood estimator of the spline parameters φ could
be calculated for a fixed and reasonably chosen value of the roughness penalty parameter
τ . Then, the posterior can be re-parametrized using ϕ (Equation 2.1) with φ = φ0 + Lϕ
where L denotes the lower triangular matrix obtained from the Cholesky decomposition of
Σ0. Then, the univariate Metropolis algorithm described before can be employed on the
re-parametrized posterior. This also fastens convergence.

3 Simulation Study

Our data generation and simulation strategy contain the following steps:

1. Firstly, we generate the log-frailty terms zg from one of the specified frailty distribu-
tions.

2. Then the values of the covariate, xgj are generated.

3. Afterwards, given the values of frailty terms and the covariate, the observations tgj
(g = 1, ..., G; j = 1, ..., ng) are generated using the selected proportional hazards frailty
model.

4. Each observation tgj is converted into an interval of width wgj , where wgj is generated
from a Gamma distribution with a mean equal to the targeted mean width (0.5σ, 1.0σ
and 1.3σ) and a variance equal to one fifth of the mean. The interval corresponding
to tgj was finally defined as (Lgj , Rgj)=(tgj − ugj . wgj , tgj + ugj . wgj) where ugj is
randomly generated from a uniform distribution on (0,1).
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5. For each simulated data set, initial values for the spline parameters were obtained
using the strategy described in Section 2.2.

6. We sample the posterior for the parameters of interest using MCMC (see Section 3.3).

7. Steps 1-6 were repeated for all data sets (S = 300 times) to obtain the Monte Carlo
estimates for the quantities of interest.

3.1 Sensitivity analysis

Following the advice from the referees, some of the simulation studies have been run again
with different prior specifications, namely Gamma (2,0.01) for the penalty parameters, and
inverse-gamma(1,1) and inverse-gamma(2,1) for the standard deviation of the frailty. The
detailed results are presented in the tables below. The results in Tables 1 and 2 can be
compared to the results in the main paper. Table 1 and Table 2 presents two different
sensitivity analysis with different prior distribution specifications, namely Gamma (2,0.01)
prior for the penalty parameters, and inverse-gamma(1,1) and inverse-gamma(2,1) priors
for the standard deviation of the frailty.

• The unimodal setting with α=0.8 can be compared to left half of Table 1 (main paper)
for the given sample sizes.

• The bimodal setting with α=0.8 can be compared to left half of Table 2 (main paper)
for the given sample sizes.

• The bimodal setting with α=1.2 can be compared to right half of Table 2 (main paper)
for the given sample sizes.

• The skewed setting with α=1.2 can be compared to Table 3 (main paper) for the
given sample sizes.

It reveals that changes in prior specification have a limited impact on bias and coverage
of credible intervals for the regression parameters, with occasionally a slight improvement
(over our standard prior) in the estimation of the standard deviation of the log-frailty. It
should also be stressed here that sensitivity analyses were performed for the smallest sample
sizes where the chosen prior has the biggest potential impact.

4 Application: Signal Tandmobiel R© Study

The Signal Tandmobiel R© data set results from a longitudinal prospective dental study
performed in Flanders (northern Belgium) between 1996 and 2001, using 4468 randomly
selected children attending the first year of primary school at the beginning of the study.
Then annual dental examinations were performed on the selected cohort by one of 16 trained
dentists.
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Table 1: Sensitivity analysis I: The mean, relative bias (Rbias in %), 90% credible inter-
vals and corresponding empirical coverages (EC) for β and α in S=300 replications using
Gamma(2,0.001) prior for penalty parameters τ and τ∗, Inverse-gamma(1,1) prior for stan-
dard deviation of frailty α

Semiparametric Gaussian
β=0.693 β=0.693

Distribution α ncl ng N Mean 90% CI Rbias(%) EC90 EC80 Mean 90% CI Rbias(%) EC90 EC80

Unimodal 0.8

20 10 200 0.75 (0.51-0.98) 8.4 90 80 0.75 (0.51-0.99) 8.6 91 80
50 4 200 0.75 (0.46-1.03) 8.5 89 77 0.75 (0.46-1.04) 8.7 89 77
50 6 300 0.74 (0.52-0.95) 6.7 91 78 0.74 (0.52-0.95) 6.8 89 77
100 4 400 0.71 (0.51-0.91) 2.4 89 78 0.71 (0.51-0.91) 2.7 90 78

Bimodal 0.8
20 10 200 0.76 (0.51-1.06) 9.9 86 80 0.76 (0.50-1.05) 9.1 86 80
50 4 200 0.75 (0.49-1.04) 8.3 89 79 0.76 (0.48-1.05) 8.0 88 79
50 10 500 0.71 (0.55-0.88) 3.1 93 84 0.71 (0.55-0.87) 2.9 92 84

Bimodal 1.2

20 10 200 0.71 (0.42-1.02) 2.9 90 81 0.71 (0.40-1.01) 2.1 90 81
50 4 200 0.72 (0.37-1.00) 4.5 88 75 0.73 (0.37-1.02) 4.7 89 75
50 6 300 0.72 (0.48-0.96) 3.6 91 82 0.71 (0.46-0.95) 2.4 90 82
100 4 400 0.71 (0.51-0.93) 2.4 90 80 0.71 (0.49-0.93) 2.9 90 80

Skewed 1.2

20 10 200 0.73 (0.45-1.02) 5.2 92 81 0.73 (0.45-1.01) 5.4 91 81
50 4 200 0.72 (0.39-1.01) 3.5 90 77 0.72 (0.39-1.02) 3.5 90 79
50 6 300 0.72 (0.48-0.96) 3.4 91 77 0.72 (0.47-0.96) 3.4 90 77
100 4 400 0.70 (0.48-0.91) 0.4 88 81 0.69 (0.46-0.92) 0.1 89 80

α α
Distribution α ncl ng N Mean 90% CI Rbias(%) EC90 EC80 Mean 90% CI Rbias(%) EC90 EC80

Unimodal 0.8

20 10 200 0.87 (0.67-1.12) 8.3 94 87 0.85 (0.65-1.11) 6.2 93 86
50 4 200 0.84 (0.68-1.06) 4.5 94 86 0.83 (0.68-1.07) 4.0 93 85
50 6 300 0.83 (0.65-1.01) 3.5 95 85 0.82 (0.65-1.00) 2.7 94 84
100 4 400 0.80 (0.65-0.95) 0.1 94 84 0.80 (0.65-0.95) 0.5 92 82

Bimodal 0.8
20 10 200 0.76 (0.51-1.06) -5.5 86 80 0.88 (0.70-1.06) 9.8 96 86
50 4 200 0.69 (0.55-0.88) -7.7 84 76 0.84 (0.66-1.04) 5.4 95 86
50 10 500 0.77 (0.65-0.87) -3.3 95 93 0.82 (0.70-0.94) 2.9 99 91

Bimodal 1.2

20 10 200 1.28 (0.89-1.47) 7.8 91 83 1.27 (0.91-1.57) 6.2 93 83
50 4 200 1.27 (0.98-1.57) 5.8 92 83 1.25 (0.98-1.55) 4.1 92 82
50 6 300 1.12 (0.95-1.30) -6.3 94 85 1.23 (1.03-1.45) 2.9 96 90
100 4 400 1.23 (1.04-1.43) 2.4 92 86 1.23 (1.04-1.43) 2.5 93 84

Skewed 1.2

20 10 200 1.27 (0.96-1.65) 5.5 94 88 1.23 (0.93-1.61) 2.9 94 87
50 4 200 1.25 (0.96-1.60) 4.0 92 84 1.22 (0.94-1.56) 1.9 92 83
50 6 300 1.23 (0.95-1.52) 2.4 91 81 1.20 (0.93-1.49) 0.3 88 81
100 4 400 1.21 (1.00-1.45) 1.0 92 83 1.20 (0.99-1.42) -0.3 92 81

Table 2: Sensitivity analysis II: The mean, relative bias (Rbias in %), 90% credible intervals
and corresponding empirical coverages (EC) for β and α in S=300 replications using Gamma
(2,0.001) prior for penalty parameters τ and τ∗, Inverse-gamma(2,1) prior for standard
deviation of frailty α

Semiparametric Gaussian
β=0.693 β=0.693

Distribution α ncl ng N Mean 90% CI Rbias(%) EC90 EC80 Mean 90% CI Rbias(%) EC90 EC80

Unimodal 0.8

20 10 200 0.75 (0.49-1.03) 8.6 87 77 0.75 (0.49-1.02) 8.8 86 77
50 4 200 0.74 (0.46-1.02) 7.0 89 80 0.74 (0.46-1.02) 7.1 88 80
50 6 300 0.72 (0.52-0.95) 4.1 91 82 0.72 (0.52-0.96) 4.3 91 83
100 4 400 0.71 (0.53-0.91) 1.9 89 81 0.71 (0.53-0.91) 2.1 90 80

Bimodal 0.8
20 10 200 0.74 (0.46-1.01) 7.3 89 73 0.74 (0.45-1.01) 6.7 87 73
50 4 200 0.74 (0.45-1.02) 6.2 88 76 0.74 (0.45-1.04) 6.6 88 76
50 10 500 0.72 (0.55-0.89) 3.4 89 80 0.71 (0.55-0.90) 3.2 89 80

Bimodal 1.2
50 4 200 0.72 (0.40-1.05) 3.3 89 79 0.72 (0.39-1.05) 3.4 90 80
50 6 300 0.72 (0.47-0.99) 3.4 89 78 0.71 (0.46-0.99) 2.2 88 78
100 4 400 0.69 (0.49-0.90) -0.1 91 84 0.69 (0.48-0.90) -0.2 91 83

Skewed 1.2

20 10 200 0.72 (0.45-1.00) 4.1 92 82 0.72 (0.45-1.00) 4.2 91 82
50 4 200 0.70 (0.41-1.01) 1.7 91 83 0.70 (0.42-1.02) 1.7 91 84
50 6 300 0.70 (0.47-0.95) 1.1 91 82 0.70 (0.47-0.95) 1.1 91 81
100 4 400 0.68 (0.46-0.90) -1.5 89 77 0.68 (0.46-0.89) -1.6 88 78

α α
Distribution α ncl ng N Mean 90% CI Rbias(%) EC90 EC80 Mean 90% CI Rbias(%) EC90 EC80

Unimodal 0.8

20 10 200 0.82 (0.60-1.07) 2.3 96 86 0.81 (0.59-1.05) 1.6 92 85
50 4 200 0.76 (0.59-1.01) -4.4 93 78 0.76 (0.59-1.01) -4.5 90 77
50 6 300 0.78 (0.62-0.96) -2.0 93 89 0.79 (0.63-0.97) -1.7 95 83
100 4 400 0.78 (0.65-0.94) -2.6 96 89 0.78 (0.66-0.93) -2.0 95 87

Bimodal 0.8
20 10 200 0.71 (0.57-0.86) -11.6 91 82 0.81 (0.64-1.01) 1.4 99 92
50 4 200 0.63 (0.34-0.83) -21.6 72 59 0.81 (0.64-0.99) 1.1 97 90
50 10 500 0.76 (0.66-0.87) -5.2 96 90 0.81 (0.70-0.92) 0.8 98 94

Bimodal 1.2
20 10 200 1.20 (0.94-1.47) 0.4 95 89 1.19 (0.95-1.46) -0.5 93 88
50 4 200 1.09 (0.90-1.26) -9.3 88 76 1.19 (0.98-1.40) -0.6 94 89
50 6 300 1.21 (1.03-1.41) 0.6 94 83 1.21 (1.03-1.40) 0.8 94 88

Skewed 1.2

20 10 200 1.16 (0.87-1.54) -3.1 94 86 1.14 (0.86-1.51) -4.6 93 83
50 4 200 1.14 (0.88-1.43) -5.0 94 80 1.13 (0.88-1.40) -6.1 88 79
50 6 300 1.17 (0.91-1.40) -2.6 93 85 1.15 (0.90-1.36) -4.1 90 81
100 4 400 1.18 (0.97-1.39) -2.7 90 78 1.17 (0.97-1.39) -2.7 90 78
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