Code 0Ola

This code loads the PM 2.5 constituent data set.

(1) y: the nx P matrix that has all the data. The different columns correspond to
the different observed items, in the order of sulfur, ammonium ion, nitrate, sulfate.

(2) u, v, t: are n x 1 vectors of longitude, latitude, and time of the observations.

All the observations were copied from ‘pm25_spec_working_data4’.

(3) Ny: number of observed items, P.

(4) N: number of observations, n.

(5) I: the P x 1 vector of factor loadings that excludes the functional part,
[)\1’0, ceey )\Pﬁo]T.

(6) s: the P x 1 vector of the variance of random errors, [0%,...,0%

The values of 1, s store here are to be used as initial values.

.

Code 01b

In this code we create the spline basis matrix for the grid points of (u,v), t.

(1) uv_grid, t_grid: are the grid points of (u, v), t used for plotting the estimated
functions. In this documentation for Code 01b the use of (u,v), t refers to the grid
points. The grid points of (u,v) were imported from ‘uv_bound-a’. The grid
points of t were equally spaced from 0.05 to 1.95 by 0.01.

(2) knot_u, knot_v, knot_t: the knot vectors of u, v, ¢t used in bspline() to
generate the spline basis matrices. These vectors were created in ‘Analysis 3 Code
01b’. They have equally spaced inner knots within the range of u, v, t, and also
have repeated boundary points as the outer knots. The number of outer knots are
equal to the degree of the spline. The number of inner knots for u, v, t are 1, 1,
6, respectively. The number of marginal spline coefficients for u, v, t are 5, 5, 10,
respectively (represented as K, K, K; in this documentation).

The reason why I use explicit knots is because the grid points and
the actual data somehow do not have the same bounds. In order to let
the two sets match in terms of using the same spline coefficients, I have
to use the same knots. Otherwise SAS will decide where the knots are
based on the range of the vector.

(3) z_uv, z_t: are Z,,, Z; used to impose the linear constraints on the spline
coefficients.

First we construct X,, X,, X; as the spline basis matrices for u, v, t (denoted
by ‘c.w’, ‘cv’y ‘ct’ in the code). The tensor product matrix for (u,v) is (X, ®
J%;u) o (JIT(M ® X,), that is, each row of X,,, is the Kronecker product of the rows
of X, and X,,.

We set the centering constraints for 3,,, 3, as +11X,,8,, =0, 217X,;3, = 0.
It guarantees the mean of the function values f,,, f, of all the grid points are zero.
We then create Z,,, Z; using ‘center()’.

(4) c_uv_grid, c_t_grid: are X,,,Z,, and X;Z;, respectively.

Code 01b2

This code creates the spline basis matrices for (u,v), ¢t from the actual data.

(1) ccuv_z, c_t_z: are X,,Z,, and X;Z;, respectively. The procedure is the
same as in Code 01b for the grid points of (u,v), t. ‘cuv_z’ and ‘c_t_z” are Xy, Zyy

1



and X;Z;, respectively. Note that Z,,,, Z; were created in Code 01b, based on the
grid points. Here X,,, X; are the basis matrices of (u,v), t from the actual
data set, different than in Code 01b2, even though the same notation is
used.

(2) cz: is X = [J,,, XowZuv, X+ Z:]. Notice the notational difference here.
In the manuscript, X,,, X; are already transformed with the centering
constraints.

(3) nb_uv, nb_t, nb: the number of columns in ‘c_uv_z’, ‘c_t_z’, ‘c_z’.

(4) Bouv_z, B.vu_z, Bt z: the ‘half’ penalty matrices, ByjyZuv, ByjuZuv,
B.Z,.

First we have the ‘half’ penalty matrices, B,,, By, By, created from ‘penalty()’
(denoted by ‘B_u’, ‘B_v’, ‘B_t’ in the code). In this documentation, a ‘half’ penalty
matrix, B, means it satisfies BTB = S, the penalty matrix.

X, X5 (denoted by ‘c_u2’; ‘c_v2’ in the code) are the basis matrices of @, 7,
the vectors of grid points used for integrating the univariate penalties of 3, ,,, B, ,
when penalizing 3,, ,,,. We first look at one part of the composite penalty for 3,, ,,,,,

,Biwsmﬁp}w. Since the penalty matrix S,j, = S, ® (XIX5) and S, = BLB,,,
Sy = (B @ XI)(B, ® X5). So the ‘half’ penalty matrix of S, is B, ® Xg.
Similarly, the ‘half’ penalty matrix of S,,, is Xg @ B,.

Then, we add the Z matrix to the ‘half’ penalty matrix. The rationale is if
B =173, then B7'SB = B1(27SZ)3, = BL(Z"B")(BZ)B.. So the ‘half’ penalty
matrix becomes BZ.

(5) B_vec, B_vec_idx: matrices that facilitate the coding of composite penalty
matrix for the estimation part.

The ‘B_vec’ column vector is a rearrangement of the three B matrices, ‘B_uv_z’,
‘Bvuz’, ‘Btz. Each row of these matrices are aligned side by side through
‘btran()’ (and transposed to be a column vector) and then stacked together. We
can recover ‘B_uv_z’, ‘B_vu_z’, ‘B_t_z’ from ‘B_vec’ using information stored in the
first three columns of ‘B_vec_idx’. The first and second columns (‘idx1’ and ‘idx2’)
tell us the start and end points in ‘B_vec’ that mark the section related to each B
matrix. The third column (‘idx3’) gives us the number of columns each B matrix
has.

The fourth and fifth column (‘idx4’ and ‘idx5’) tell us the start and end points
that mark the section of 3, = [\, 0, ﬁg’um 5£t]T penalized by each B matrix. Note
that ‘idx4’ and ‘idx5’ are both shifted by 1 in the code because )\, is
not penalized.

We have all this information, from ‘idx1’ to ‘idx5’, for all the three penalty
matrices involved, and they are listed as the three rows of ‘B_vec_idx’, in the order
of Bu\uv B1)|u7 B;.

Later we can see that it simplifies the code for calculating the deriva-
tives of GCV because we only operate with ‘B_vec’ and ‘B_vec_idx’. So,
when we change the penalty structure, we only need to change ‘B_vec’
and the indices. But, we do not need to modify much, if at all, the code
for the actual algorithm.



