
Note that the code for the real data set does not estimate µp. We
also use a single subscript i instead of ij because our algorithm does not
make a distinction between time and location. There is no particular
‘group’ structure related to time or location.

Notation:
θp = {βp, σ2

p},
θ = {θ1, . . . ,θP },
Λi = [λ1,i, . . . , λP,i]

T ,
Σε = diag(σ2

1 , . . . , σ
2
P ),

Σy,i = ΛiΛ
T
i + Σε,

y.,i = [y1,i, . . . , yP,i]
T ,

yp,. = [yp,1, . . . , yp,n]T ,

η
(r)
i = Eθ(r−1)(ηi|y.,i),

(η̌2
i )(r) = Varθ(r−1)(ηi|y.,i),

ωp = [ωp,u|v, ωp,v|u, ωp,t]
T ,

ρp = [ρp,u|v, ρp,v|u, ρp,t]
T ,

X̃(r) = η(r) ◦X, where η(r) = [η
(r)
1 , . . . , η

(r)
n ]T ,

X̌(r) = η̌(r) ◦X, where η̌(r) = [(η̌2
1)(r), . . . , (η̌2

n)(r)]T ,

B
(r)
ωp =

[
0 B

(r)
ωp,uv 0

0 0 B
(r)
ωp,t

]
, where (B

(r)
ωp,uv )TB

(r)
ωp,uv = ω

(r)
p,u|vSu|v + ω

(r)
p,v|uSv|u,

(B
(r)
ωp,t)

TB
(r)
ωp,t = ω

(r)
p,tSt, and the first column is all zero.

Note that Su|v, Sv|u, St are all assumed as transformed already with
the Z matrices. So, we should use ‘B uv z’, ‘B vu z’, ‘B t z’ when con-
structing these penalty matrices.

E():

This module does the E-step. It uses θ(r−1), and returns η
(r)
i , (η̌2

i )(r), and it also

evaluates the log-likelihood, logL
(
θ(r−1)

∣∣∣y).

Formulas:

η
(r)
i = (ΛT

i )(r−1)
(
Σ

(r−1)
y,i

)−1

y.,i

(η̌2
i )(r) = 1− (ΛT

i )(r−1)
(
Σ

(r−1)
y,i

)−1

Λ
(r−1)
i

logL
(
θ(r−1)

∣∣∣y) ∝ −1

2

n∑
i=1

[
log
∣∣∣Σ(r−1)

y,i

∣∣∣+ yT.,i

(
Σ

(r−1)
y,i

)−1

y.,i

]
Arguments:
(1) mm y: the n× P data matrix, y = [y.,1, . . . ,y.,n]T .

(2) mm l: the n× P matrix of factor loadings,
[
Λ

(r−1)
1 , . . . ,Λ(r−1)

n

]T
.

(3) mm s: the P×1 vector of the variance of random errors,
[
(σ2

1)(r−1), . . . , (σ2
P )(r−1)

]T
.

(4) mm N: the number of observations, n.
1
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(5) mm eta: the n × 2 matrix that stores η
(r)
i (the first column), (η̌2

i )(r) (the
second column).

(6) mm lkhd: 2 logL
(
θ(r−1)

∣∣∣y).

Internal Variables:
(1) l i: Λ

(r−1)
i .

(2) inv vy:
(
Σ

(r−1)
y,i

)−1

.

(3) y i: y.,i.

(4) eta: η
(r)
i .

(5) eta2: (η̌2
i )(r).

M QR():
This module does the first part of the M-step: QR decomposition.
Formulas:

β(r)
p =

[
(X̃T )(r)X̃(r) + (X̌T )(r)X̌(r) + (BT

ωp
)(r)B(r)

ωp

]−1

(X̃T )(r)yp,.

Arguments:
(1) mm y: the n× 1 vector, yp,..

(2) mm X1, mm X2: X̃(r), X̌(r). We carry out QR decomposition on these
two matrices.

(3) mm nb: K, the dimension of β(r)
p .

(4) mm r1, mm r2: R̃(r), R̃(r), the two R matrices from QR decomposition of

X̃(r), X̌(r).
(5) mm qy: Q̃T

1 yp,., where Q̃1 is the first K columns of Q̃, the Q matrix from

QR decomposition of X̃(r). In SAS, Q̃Typ,. is directly output from ‘call qr()’, so

we obtain the first K rows of Q̃Typ,..
Note:
When we apply ‘call qr()’ on X̌(r), we let it output Q̌T

1 Jn, even though we do
not need this in our computation. We do this to avoid output the whole n × n Q̌
matrix, which costs time.

M SVD():
This module does the second part of the M-step: SVD decomposition and obtain

θ(r)
p , GCV(r)

p given η
(r)
i , (η̌2

i )(r), ω
(r)
p .

Formulas: R̃(r)

Ř(r)

B
(r)
ωp

 =

U1

U2

U3

DVT

P−1 = VD−1

y∗p = UT
1 Q̃T

1 yp,.

β(r)
p = P−1y∗p
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(σ2
p)(r) =

1

n

[
yTp,.yp,. − 2(y∗p)

Ty∗p + (y∗p)
T (UT

1 U1 + UT
2 U2)y∗p

]
∆(r)
p = ‖yp,. − X̃(r)β(r)

p ‖2

δ(r)
p = n− tr(UT

1 U1)

GCV(r)
p =

n∆
(r)
p

[δ
(r)
p ]2

Arguments:

(1) mm RBm: the input matrix for SVD decomposition,

R̃(r)

Ř(r)

B
(r)
ωp

.

(2) mm y: the n× 1 vector, yp,..

(3) mm X1: X̃(r).

(4) mm qy: Q̃T
1 yp,., which is output from ‘M QR’ through the argument ‘mm qy’.

(5) mm nb: K, the dimension of β(r)
p .

(6) mm N: n, the number of observations.
(7) mm Pm inv, mm UU1, mm uqy: P−1, UTU, y∗p, respectively.

(8) mm dt1, mm dt2, mm GCV: δ
(r)
p , ∆

(r)
p , GCV(r)

p , respectively.

(9) mm s: (σ2
p)(r).

(10) mm l, mm b: λ
(r)
p,0, [(β(r)

p,uv)
T , (β

(r)
p,t)

T ]T , respectively.
Internal Variables:

(1) Um, Dm, Vm: are

U1

U2

U3

, the K × 1 vector that has the diagonal of D,

and the K ×K orthogonal matrix V, respectively.
(2) UU2: UT

2 U2.

M drho():

This module adjusts ω
(r)
p until GCV(r)

p actually decreases.

We use a quadratic approximation of GCV(r)
p to find ω

(r)
p that supposedly min-

imizes GCV(r)
p . The approximation is based on the first and second derivatives of

GCV(r)
p with regard to ρp, the logarithm of ωp. Sometimes the approximation is

not good enough and the ωp that minimizes the approximated GCV(r)
p does not

even reduce the actual GCV(r)
p . In this case, we adjust ω

(r)
p and check the GCV(r)

p

again.
This module does not calculate the derivatives, which are output from ‘GCVr()’.

It also does not evaluate GCV(r)
p during the process, but it works in tandem with

‘M SVD()’ and iteratively checks whether GCV(r)
p has decreased. The adjustment

of ω
(r)
p happens in a ‘withdrawing’ fashion, which means we always move from

the initial ωp and depend only on the derivatives of GCV(r)
p evaluated at that ωp.
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When we go to ωp that does not decrease GCV(r)
p , it means we go too far and we

move back accordingly.
Here are the detailed steps of how this module works. Note that we work

with ρp, the logarithm of ωp, because ωp is a vector of positive smoothing
parameters and is thus constrained.

(1) Let [ρp]0 be the initial ρp.

Before starting, we should have (a) GCV(r)
p evaluated at [ρp]0, denoted by

[GCV(r)
p ]0, (b) the derivatives of GCV(r)

p evaluated at [ρp]0, (c) [ρp]1, the new ρp ob-

tained using the derivatives, (d) GCV(r)
p evaluated at [ρp]1, denoted by [GCV(r)

p ]1.

(2) We compare [GCV(r)
p ]1 with [GCV(r)

p ]0. If [GCV(r)
p ]1 < [GCV(r)

p ]0, then

ρ
(r)
p = [ρp]1. If not, we use the following two alternative ways to ‘move back’ and

get a new ρp.
(3) Let [ρp]2 be the new ρp.

Option1: [ρp]2 = [ρp]0 + κ
(
[ρp]1 − [ρp]0

)
.

Option2: [ρp]2 = [ρp]0−κd[∇GCV(r)
p ]0, where d =

‖[ρp]1−[ρp]0‖
‖[∇GCV

(r)
p ]0‖

and [∇GCV(r)
p ]0

is the gradient of GCV(r)
p ρp evaluated at [ρp]0.

Both options obtain [ρp]2 by moving from [ρp]0 in a smaller distance than before

when κ < 1 (in the code we use κ = 1
2 ). Option1 follows in the direction suggested

by the ‘quadratic approximation’, that is, the direction from [ρp]0 to [ρp]1. Option2

uses another route by following the ‘steepest descent’, −[∇GCV(r)
p ]0. d is used to

adjust the size of the descent and we make ‖d[∇GCV(r)
p ]0‖ = ‖[ρp]1 − [ρp]0‖.

(4) Then we go back to Step (2), replacing [ρp]1 with [ρp]2. But before repeating
the whole process, we exit this module and use ‘M SVD()’ again, so that we can
have the item (d) listed in Step (1). Items (a) and (b) are unchanged. Item (c) is
updated with [ρp]2, as said before.

We first use Option1 to adjust ρ
(r)
p . If that does not work after a couple of times,

then it suggests the ‘quadratic approximation’ is poor and we switch to Option2.
In the code Option1 is replaced after three times.

Another thing to note is this module only gives us ω
(r)
p that decreases but not

necessarily minimizes GCV(r)
p . We find the minimum by using another loop to

obtain a series of ω
(r)
p that decreases GCV(r)

p successively until it reaches the min-
imum. During each iteration of this loop, we replace the item (a) in Step (1) with

ρ
(r)
p from the last iteration. Items (b) – (d) are obtained by calling for ‘GCVr()’,

‘M rho()’, ‘M SVD()’ before starting the iteration (see below the notes on mm ir
for more explanation).

Arguments:
(1) mm rho, mm rho0: [ρp]1, [ρp]0, respectively.

(2) mm GCV, mm GCV0: [GCV(r)
p ]1, [GCV(r)

p ]0, respectively.

(3) mm GCVr0: [∇GCV(r)
p ]0, which is the same as the first derivative of

GCV(r)
p with regard to ρp, output from ‘GCVr()’.

(4) mm GCVm: is an indicator that indicates if [GCV(r)
p ]1 > [GCV(r)

p ]0. When
mm GCVm = 1, the adjusting stops.

(5) mm drho: is d, used in Option2.
(6) mm opt: is an indicator that indicates whether Option1 or Option2 is used.
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(7) mm ir: is the index of the ‘outer’ loop that successively decreases GCV(r)
p ,

as stated before. During each iteration of this loop, we obtain a ω
(r)
p that reduces

the GCV(r)
p further. Note that no adjusting occurs during the first iteration

of this loop, that is, mm GCVm is automatically set to 1. This is because
before adjusting starts, we need all the items (a) – (d) listed in Step 1, and this
requires calling for ‘GCVr()’, ‘M rho()’, ‘M SVD()’. However, for the first iteration,

we only have (a), which is ω
(r−1)
p . So, we pass this module immediately in order

to obtain items (b), (c) from ‘GCVr()’, ‘M rho()’. Item (d) is created when we go
to the second iteration and reach ‘M SVD()’ first before using this module to start
adjusting. This problem only occurs at the first iteration. For subsequent iterations,
we will always have run ‘GCVr()’, ‘M rho()’ at the end of the last iteration. (We put
‘GCVr()’, ‘M rho()’ after ‘M SVD()’ in the algorithm because ‘GCVr()’ depends on
the output items from ‘M SVD()’.)

(8) mm ir2: is the index of the ‘inner’ loop that iterates between ‘M SVD’ and
this module to carry out the adjusting. When mm ir2 = 3 we set mm opt = 2 so
that in the fourth iteration we will use Option2.

GCVr():

This module computes the first and second derivatives of GCV(r)
p with regard to

ρp.

We use V as GCV(r)
p in the formulas below and we use ρa, ρb (omitting the

subscript p) as the a-th and b-th entries of ρp (the same notation is applied to ωp).

We also let m be a column vector whose a-th entry is ∂V
∂ρa

and M be a matrix whose

(a, b)-th entry is ∂2V
∂ρa∂ρb

. ∆ and δ refer to ∆
(r)
p and δ

(r)
p .

Since ρp is only associated with the penalty, We now look at the derivatives of
the composite penalty matrix (the following part is mainly to explain how we derive
the matrix Pa used in the formulas),

S(r)
ωp

= (B(r)
ωp

)TB(r)
ωp

=

0 0 0
0 ωp,u|vSu|v + ωp,v|uSv|u 0
0 0 ωp,tSt

 .
Listed below are the three first derivatives. Note that the penalty matrices in
these derivatives are in the same position as they are in the composite
penalty matrix.

∂S
(r)
ωp

∂ρp,u|v
= ωp,u|v

0 0 0
0 Su|v 0
0 0 0

 , ∂S
(r)
ωp

∂ρp,v|u
= ωp,v|u

0 0 0
0 Sv|u 0
0 0 0

 ,
∂S

(r)
ωp

∂ρp,t
= ωp,t

0 0 0
0 0 0
0 0 St

 .
In the following computation, these derivatives are all in the form of (P−1)T

∂S(r)
ωp

∂ρa
P−1.

Since
∂S(r)

ωp

∂ρa
is a block diagonal matrix with only one non-zero block, we only need

to use those rows in P−1 that match the non-zero diagonal block in
∂S(r)

ωp

∂ρa
. For
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example, in the case of
∂S(r)

ωp

∂ρp,t
, we extract the last Kt rows of P−1 (Kt being the

number of columns in the square matrix St) as a new Kt×K matrix, P̃t. Then we

have (P−1)T
∂S(r)

ωp

∂ρp,t
P−1 = ωp,tP̃

T
t StP̃t.

In general, we partition P−1 according to the block diagonal structure of the
composite penalty matrix, which in our case becomes

P−1 =

 P̃0

P̃uv

P̃t

 .
The three partitions are 1×K, Kuv ×K, Kt ×K matrices, respectively (Kuv be-

ing the number of columns in Su|v and Sv|u). Then we calculate (P−1)T
∂S(r)

ωp

∂ρa
P−1

as ωaP̃
T
a SaP̃a, where Sa is the penalty matrix related to ωa and P̃a is the corre-

sponding partition from P−1. According to the composite penalty matrix we are
using, 

ω1 = ωp,u|v, S1 = Su|v, P̃1 = P̃uv,

ω2 = ωp,v|u, S2 = Sv|u, P̃2 = P̃uv,

ω3 = ωp,t, S3 = St, P̃3 = P̃t.

In the formulas below, we let Pa = P̃T
a SaP̃a.

Formulas:

∂V
∂ρa

=
n

δ2

(
∂∆

∂ρa
− 2∆

δ

∂δ

∂ρa

)
∂2V

∂ρa∂ρb
=

n

δ2

(
−2

δ

∂∆

∂ρa

∂δ

∂ρb
+

∂2∆

∂ρa∂ρb
− 2

δ

∂δ

∂ρa

∂∆

∂ρb
+

6∆

δ2

∂δ

∂ρa

∂δ

∂ρb
− 2∆

δ

∂2δ

∂ρa∂ρb

)
∂δ

∂ρa
= ωatr(PaU

T
1 U1)

∂2δ

∂ρa∂ρb
= −2ωaωbtr(PbPaU

T
1 U1) + I(a = b)

∂δ

∂ρa

∂∆

∂ρa
= 2ωa(y∗p)

T (Pa −PaU
T
1 U1)y∗p

∂2∆

∂ρa∂ρb
= −2ωaωb(y

∗
p)
T
[
PaPb −PaPbU

T
1 U1 + PbPa −PbPaU

T
1 U1

−PaU
T
1 U1Pb

]
y∗p + I(a = b)

∂∆

∂ρa

Arguments:

(1) mm nb: K, the dimension of β(r)
p , also the number of columns in P−1.

(2) mm Bvec, mm Bidx: ‘mm Bvec’ is a column vector that has all the entries
of the ‘half’ penalty matrices (see the ‘Matrix’ documentation of Code 01b2 on
‘B vec’ and ‘B vec idx’). ‘mm Bidx’ is a matrix of indices that tells the module
how to restore the penalty matrices from ‘mm Bvec’ and how to partition P−1.
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We use these when we construct each Pa and then calculate the derivatives in a
loop. Let Nω be the number of smoothing parameters in ωp. ‘mm Bidx’ is then a
Nω × 5 matrix, and its a-th row contains five indices that are related to Pa.

For the current model, we have a = 1, 2, 3, and the respective Sa matrices are
S1 = Su|v, S2 = Sv|u, S3 = St. We retrieve these from ‘mm Bvec’ using the
first three indices from ‘mm Bidx’, namely, the (a, 1), (a, 2), (a, 3)-th entries of

‘mm Bidx’. Then we obtain P̃a from P−1 with the last two indices, the (a, 4),
(a, 5)-th entries of ‘mm Bidx’. The row indices of P−1 from 2 to Kuv + 1 give

us the block of P̃uv, and the P̃t block is from the (Kuv + 2)-th to the (Kuv +
Kt + 1)-th rows of P−1. Thus, the last two columns of ‘mm Bidx’ should be 2 Kuv + 1

2 Kuv + 1
Kuv + 2 Kuv +Kt + 1

 .

(3) mm Pm inv, mm UU1, mm uqy, mm dt1, mm dt2:

are P−1, UTU, y∗p, δ
(r)
p , ∆

(r)
p , respectively. These are output from ‘M SVD()’.

(4) mm rho: ρp.
(5) mm GCVr, mm GCVrr: are m and M, respectively. Compared with

the formulas, a factor of n
δ2 is taken out from both ‘mm GCVr’ and ‘mm GCVrr’

because eventually it will be cancelled out when we compute ω
(r)
p .

Internal Variables:
(1) om: is ωp = exp(ρp).
(2) Nf : Nω, the number of smoothing parameters in ωp.
(3) Bm, BP i, P i:
‘Bm’ is Ba, the ‘half’ penalty matrix of Sa, restored using ‘btran()’. We first

extract from ‘mm Bvec’ the section related to Ba through the first two indices of
‘mm B idx’, that is, its (a, 1), (a, 2)-th entries. The (a, 3)-th entry has the number
of columns in Ba.

‘BP i’ is BaP̃a, and we obtain P̃a from ‘mm Pm inv’ (P−1) using the (a, 4),
(a, 5)-th entries of ‘mm B idx’ (described above in the documentation of ‘mm B idx’).

‘P i’ is Pa = P̃T
a SaP̃a = (BaP̃a)T (BaP̃a).

(4) PS, pxi, P y, PUU, PUU y, y PUU:
‘PS’ is a K ×NωK matrix that collects all the Pa matrices side by side as the

loop moves along. (‘P i’ is freed from the memory after one iteration ends and is
created anew in the next iteration.) We keep them all because they are needed in
the computation of the second derivatives. ‘pxi’ is the index that lets us keep track
of each ‘P i’ in ‘PS’.

‘P y’, ‘PUU y’ are bothK×Nω matrices that respectively collect Pay
∗
p, PaU

T
1 U1y

∗
p

as their a-th columns during the a-th iteration. All of them, like all the Pa, will
later be used in the computation of the second derivatives.

We also calculate ‘PUU’ and ‘y PUU’, which are PaU
T
1 U1 and (y∗p)

TPaU
T
1 U1.

‘PUU’ is used as an intermediate variable in the calculations of both ‘PUU y’ and
‘y PUU’. ‘y PUU’ is needed only in the current iteration, so unlike ‘P y’, ‘PUU y’,
it does not have to be collected in a matrix.

(5) dt1r, dt2r, dt1rr, dt2rr:
‘dt1r’ and ‘dt2r’ are Nω × 1 column vectors whose a-th entries are ∂δ

∂ρa
and ∂∆

∂ρa
,

respectively. ‘dt1rr’ and ‘dt2rr’ are Nω × Nω matrices whose (a, b)-th entries are
∂δ

∂ρa∂ρb
and ∂∆

∂ρa∂ρb
, respectively.
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Since the second derivative matrices are symmetric, we only compute the lower
triangular part. So within the a-th iteration, we use a second loop that fills in the
(a, b)-th entry (b ≤ a) of the second derivative matrices.

(6) GCVr, GCVrr: are basically the same as ‘mm GCVr’ and ‘mm GCVrr’

(‘mm GCVr’ is just ‘GCVr’). But sometimes the second derivatives ∂2V
∂ρ2a

can be

negative. In this case the ‘quadratic approximation’ would lead us to the maximum

of the approximated GCV(r)
p . We ‘fix’ this problem by simply changing the negative

sign to positive.

M rho:
This module outputs the new ρ

(r)
p based on the last adjusted ρ

(r)
p (denoted by

ρ
(r′)
p ), the m and M matrices (see the documentation of ‘M drho()’ for details

about how ρ
(r)
p is updated).

Formulas:

ρ(r)
p = ρ(r′)

p −M−1m

Arguments:

(1) mm rho: ρ
(r′)
p .

(2) mm GCVr, mm GCVrr: are m and M matrices, respectively.

(3) mm min, mm max: set the lower and upper bounds of ρ
(r)
p .


