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A Identifiability (additional figures)

In Section 2.1 of the main paper, we illustrate non-identification in the Pogit model for simulated

data and show that additional information on the reporting process, provided either through an

informative prior distribution or a sample of validation data, allows parameter identification in a

simple version of the Pogit model with only an intercept in both parts of the model. Here we show

additional figures for Section 2.1 with varying the amount of information on the reporting process.

We simulated the data with βtrue
0 = 1 and αtrue

0 = 1.8 (which is similar to α̂0 in Table 5 of Section 5 in

the main paper for the cervical cancer data set). Observed data were generated from a Poisson distri-

bution with Ei = 100, i = 1, . . . , 1000, λ = exp(βtrue
0 ) and p = logit−1(αtrue

0 ). In the following figures,

we plot the scaled log-posterior distribution log p(β0, α0|y)∗ = max(log p(β0, α0|y))/ log p(β0, α0|y).

Figure A1 shows contour and surface plots of the scaled log-posterior of the parameters (β0, α0) with

varying the amount of prior information

p(α0) ∼ N (αtrue
0 ,Mα,0),

in terms of the prior variance Mα,0. As the prior variance Mα,0 and thus, the uncertainty on α0

decreases, the shape of the resulting posterior distribution becomes more and more elliptical.

Figure A2 shows again contour and surface plots of the scaled log-posterior of (β0, α0), but now for

varying sample sizes of validation data m = 10, 50, 100 (top) and m = 250, 500, 1000 (bottom).
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Figure A1: Contour and surface plots of the (scaled) log-posterior log p(β0, α0|y)∗ for a Pogit

intercept model (βtrue
0 = 1, αtrue

0 = 1.8) with varying prior information p(α0) ∼ N (αtrue
0 ,Mα,0); top:

Mα,0 = 0.052 (left), Mα,0 = 0.012 (middle) and Mα,0 = 0.00752 (right); bottom: Mα,0 = 0.0052

(left), Mα,0 = 0.00252 (middle) and Mα,0 = 0.0012 (right).
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Figure A2: Contour and surface plots of the (scaled) log-posterior log p(β0, α0|y)∗ for a Pogit

intercept model (βtrue
0 = 1, αtrue

0 = 1.8) with varying sample size m of validation data; top: m = 10

(left), m = 50 (middle) and m = 100 (right); bottom: m = 250 (left) m = 500 (middle) and

m = 1000 (right).
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B Further simulation studies

B.1 Sensitivity to the prior distribution (Simulation I)

To investigate how sensitive inference on model parameters is with respect to the prior distribution,

we vary the slab variance for the regression effects in simulation I (see Section 4.1 of the main paper)

by choosing different values for the hyper-parameter Q. We fix the shape parameter to ν = 5, but

instead of our standard choice Q∗ = 20, we use Q1 = 5, Q2 = 80 and Q3 = 10000. These prior

settings correspond to slab variances of V1 = 1.25, V ∗ = 5, V2 = 20 and V3 = 2500, respectively.

With these choices, the marginal prior probability for a regression effect to be in the interval [−2, 2]

is 0.96 (for Q1), 0.83 (for Q∗), 0.69 (for Q2) and 0.52 (for Q3), respectively.

Table B1 reports the averaged posterior means and the nominal coverage of 95%-HPD intervals

of the regression parameters in both sub-models over 300 data sets for different values of Q. To

compare model selection performance, we report averaged posterior inclusion probabilities and the

number of data sets where a regressor is included in the final model in Table B2.

Table B1: Simulation I. Averaged posterior means (Av. Pm.) and nominal coverage of (model av-

eraged) 95%-HPD intervals of the regression effects over 300 data sets for different hyper-parameters

Q of slab variances.

Av. Pm. Cov. of 95%-HPD intervals

True Q1 = 5 Q∗ = 20 Q2 = 80 Q3 = 10000 Q1 = 5 Q∗ = 20 Q2 = 80 Q3 = 10000

α0 2.2 2.182 2.237 2.256 2.258 0.95 0.95 0.92 0.92

α1 -1.9 -1.838 -1.922 -1.954 -1.956 0.95 0.94 0.94 0.93

α2 0 -0.021 -0.010 -0.006 -0.001 1.00 1.00 1.00 1.00

α3 0 0.004 0.003 0.002 0.000 1.00 1.00 1.00 1.00

α4 0 0.007 0.005 0.003 0.001 1.00 1.00 1.00 1.00

β0 0.75 0.755 0.750 0.748 0.749 0.92 0.92 0.90 0.89

β1 0.5 0.478 0.496 0.503 0.503 0.95 0.96 0.96 0.94

β2 -2.0 -1.991 -2.000 -2.003 -2.005 0.97 0.97 0.96 0.96

β3 0 -0.001 0.000 0.000 0.000 1.00 1.00 1.00 1.00

β4 0 -0.002 -0.001 -0.001 0.000 1.00 1.00 1.00 1.00

We find that the prior has a minor effect on the averaged posterior means as long as the variance of

the slab is not too small (i.e. V ≥ 5). However, the nominal coverage of 95%-HPD intervals slightly

decreases as the slab variance increases.

Figure B3 shows the estimated posterior inclusion probabilities for the different prior settings. We

observe that the posterior inclusion probabilities are slightly affected by the prior and decrease

with increasing variance of the slab component, which is the expected behaviour, see Malsiner-

Walli and Wagner (2011). Thus, as shown in Table B2, classification is less perfect for a small slab

variance (e.g. for Q1), where the false discovery rate of zero effects is considerably higher than for

large slab variances. In contrast, if the slab variance gets rather large (e.g. for Q3), non-zero effects

are more likely not to be detected due to the generally smaller posterior inclusion probabilities:

Based on posterior inclusion probabilities above 0.5, in two data sets in the logit sub-model and in

three data sets in the Poisson sub-model one of the non-zero effects is misclassified as zero.
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Figure B3: Simulation I. Posterior inclusion probabilities over 300 data sets for different hyper-

parameters Q of slab variances; top: Q1 = 5 (left-hand side), Q∗ = 20 (right-hand side); bottom:

Q2 = 80 (left-hand side), Q3 = 10000 (right-hand side); ν fixed.

Table B2: Simulation I. Averaged posterior inclusion probabilities (Av. p̂∗,j) and number of models

(Nmod) where a regressor is included in the final model over 300 data sets for different hyper-

parameters Q of slab variances. Results for non-zero observations are given in bold.

Av. p̂∗,j Nmod

Q1 = 5 Q∗ = 20 Q2 = 80 Q3 = 10000 Q1 = 5 Q∗ = 20 Q2 = 80 Q3 = 10000

α1 1.000 1.000 1.000 0.994 300 300 300 298

α2 0.263 0.140 0.075 0.007 20 8 3 0

α3 0.210 0.103 0.051 0.005 15 4 2 0

α4 0.207 0.102 0.051 0.005 11 3 1 0

β1 1.000 0.999 0.999 0.990 300 300 300 297

β2 1.000 1.000 1.000 1.000 300 300 300 300

β3 0.147 0.077 0.039 0.004 6 1 0 0

β4 0.145 0.076 0.039 0.004 8 4 1 0

As the misclassification of a truly zero effect as non-zero affects only efficiency of the corresponding

parameter, whereas falsely classifying a non-zero effect as zero leads to heavy shrinkage of this effect

to zero and hence, might result in biased estimates, we do not recommend very large values of Q.

From these simulation results, we conclude that our prior choice is reasonable with respect to pa-

rameter estimation, nominal coverage and model selection performance. Moreover, similar priors
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are used in Fahrmeir et al. (2010) and Wagner and Duller (2012).

B.2 Sensitivity to the prior distribution (Simulation II)

Similar to the first simulation study in Section B.1, we here examine sensitivity of inference with

respect to the prior distribution for simulation II (see Section 4.2 of the main paper). The simulation

setup is the same as in simulation II and considers clustered observations. The slab variance for

the regression effects is again modified in terms of different hyper-parameters Q, while ν is fixed to

5. Additionally to our standard choice Q∗ = 20 (V ∗ = 5), we use Q1 = 5 (V1 = 1.25), Q2 = 80

(V2 = 20) and Q3 = 10000 (V3 = 2500).

Table B3 reports the averages of the posterior means and the nominal coverage of 95%-HPD intervals

over 50 data sets for each regression effect as well as for the random intercept parameter θ under

the different prior specifications. The respective model selection performance is summarized in

Table B4, showing the averages of the posterior inclusion probabilities and the number of models

where a regressor is included in the final model over all data sets.

Table B3: Simulation II. Averaged posterior means (Av. Pm.) and nominal coverage of (model

averaged) 95%-HPD intervals of the regression effects over 50 data sets for different hyper-parameters

Q of slab variances.

Av. Pm. Cov. of 95%-HPD intervals

True Q1 = 5 Q∗ = 20 Q2 = 80 Q3 = 10000 Q1 = 5 Q∗ = 20 Q2 = 80 Q3 = 10000

α0 2.2 2.202 2.201 2.201 2.202 0.98 0.96 0.96 0.96

α1 -0.3 -0.296 -0.296 -0.296 -0.296 0.96 0.96 0.96 0.96

α2 0 0.000 0.001 0.001 0.000 1.00 1.00 1.00 1.00

α3 -0.3 -0.304 -0.304 -0.305 -0.306 0.96 0.94 0.96 0.94

α4 0 0.000 0.000 0.000 0.000 1.00 1.00 1.00 1.00

θα 0.3 0.299 0.299 0.299 0.299 0.98 0.98 0.98 0.98

β0 0.75 0.750 0.750 0.750 0.750 0.94 0.94 0.94 0.94

β1 0.1 0.100 0.100 0.100 0.100 0.96 0.98 0.98 0.96

β2 0.1 0.101 0.101 0.101 0.101 0.96 0.94 0.94 0.96

β3 0 0.000 0.000 0.000 0.000 1.00 1.00 1.00 1.00

β4 0 0.000 0.000 0.000 0.000 1.00 1.00 1.00 1.00

θβ 0.1 0.103 0.102 0.102 0.103 0.98 0.96 0.98 0.96

From Table B3, we conclude that compared to simulation I, the prior has only a minor effect in

this simulation study: The averaged posterior means as well as the coverage of 95%-HPD intervals

are hardly affected by the choice of the slab variance. This is not unexpected as the number of

observations (though clustered) is much higher than in simulation I.

Considering model selection performance, the results in Table B4 and Figure B4 in turn demonstrate

that the posterior inclusion probabilities decrease with increasing variance of the slab component.

Consequently, misclassifications of zero effects are more likely for small slab variances but still, the

differences between the prior settings are negligible. Furthermore, non-zero effects are perfectly

classified as being non-zero for all data sets and slab variances, even for the very large variance Q3.
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Table B4: Simulation II. Averaged posterior inclusion probabilities (Av. p̂∗,j) and number of

models (Nmod) where a regressor is included in the final model over 50 data sets for different hyper-

parameters Q. Results for non-zero observations are given in bold.

Av. p̂∗,j Nmod

Q1 = 5 Q∗ = 20 Q2 = 80 Q3 = 10000 Q1 = 5 Q∗ = 20 Q2 = 80 Q3 = 10000

α1 1.000 1.000 1.000 1.000 50 50 50 50

α2 0.134 0.083 0.046 0.004 3 2 0 0

α3 1.000 1.000 1.000 1.000 50 50 50 50

α4 0.078 0.039 0.019 0.002 0 0 0 0

θα 1.000 1.000 1.000 1.000 50 50 50 50

β1 1.000 1.000 1.000 1.000 50 50 50 50

β2 1.000 1.000 1.000 1.000 50 50 50 50

β3 0.039 0.025 0.016 0.002 1 1 0 0

β4 0.020 0.009 0.005 0.000 0 0 0 0

θβ 1.000 1.000 1.000 1.000 50 50 50 50
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Figure B4: Simulation II. Posterior inclusion probabilities over 50 data sets for different hyper-

parameters Q of slab variances; top: Q1 = 5 (left-hand side), Q∗ = 20 (right-hand side); bottom:

Q2 = 80 (left-hand side), Q3 = 10000 (right-hand side); ν fixed.
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B.3 Simulation II with partial validation data

Whereas in the simulation study in Section B.2 we assumed that validation data are available for

every cluster, we now follow the suggestion of a referee and investigate how parameter estimation

is affected if validation data are provided only for certain clusters. We use the same setup as in

simulation II (see Section 4.2 of the main paper) except that we consider a different validation

sample and assume that validation data are available only for the first 10 clusters but not for the

remaining 40 clusters. To have a validation sample of the same size, we assume that mi = 125 for

each of the covariate patterns in the first 10 clusters, i.e. for i = 1, . . . , 160. In contrast, no validation

data are available for the remaining clusters, i.e. mi = 0 for i = 161, . . . , 800.

Table B5 shows the averages of the posterior estimates and the averaged posterior inclusion probabili-

ties (over 50 data sets) for each regressor and the respective random intercept parameter. Comparing

the results to those in Table 2 of Section 4.2 in the main paper, we find that the resulting parameter

estimates are impaired only slightly if validation data are not available for every cluster. Similarly,

the differences regarding model selection performance are negligible. However, the nominal coverage

of 95%-HPD intervals for the intercepts α0 and β0 as well as for the random intercept parameter θα

suffers somehow from the lack of information in the remaining clusters.

Table B5: Simulation II with (partial) validation data for clusters c = 1, . . . , 10. Averaged posterior

means (Av. Pm.), averaged estimated posterior inclusion probabilities (Av. p̂∗,j), nominal coverage

of (model averaged) 95%-HPD intervals (Cov.) as well as number of models (Nmod) where a regressor

is included in the final model over 50 data sets. Results for non-zero effects are given in bold.

Model Covariate True value Av. Pm. Av. p̂∗,j Cov. Nmod

Logit α0 2.2 2.202 - 0.92 -

α1 -0.3 -0.293 1.000 1.00 50

α2 0 0.000 0.046 1.00 0

α3 -0.3 -0.300 1.000 0.96 50

α4 0 0.000 0.036 1.00 0

θα 0.3 0.310 1.000 0.92 50

Poisson β0 0.75 0.751 - 0.90 -

β1 0.1 0.100 1.000 1.00 50

β2 0.1 0.101 1.000 0.94 50

β3 0 -0.001 0.030 1.00 1

β4 0 0.000 0.008 1.00 0

θβ 0.1 0.100 1.000 0.96 50

Figure B5 illustrates the posterior estimates and 95%-HPD intervals of the random intercepts ac,

c = 1, . . . , 50, in the logit sub-model for one data set with partial validation data (top panel) and

complete validation data (bottom panel). As expected, intervals for clusters c = 1, . . . , 10 with

validation data are considerably narrower than those of the remaining clusters. Particularly, the

latter contain zero for all random intercepts of clusters without validation information. Intervals

are of similar length when validation data are complete, see the bottom panel of Figure B5. The

respective results for the Poisson sub-model are shown in Figure B6.
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Figure B5: Simulation II. Posterior means and 95%-HPD intervals for random intercepts ac,

c = 1, . . . , 50, in the logit part of the joint model for one data set; top: validation data for clus-

ters c = 1, . . . , 10 (partial validation); bottom: validation data for all C = 50 clusters (complete

validation) based on the results of simulation II in Section 4.2 of the main paper.
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Figure B6: Simulation II. Posterior means and 95%-HPD intervals for random intercepts bc,

c = 1, . . . , 50, in the Poisson part of the joint model for one data set; top: validation data for

clusters c = 1, . . . , 10 (partial validation); bottom: validation data for all C = 50 clusters (complete

validation) based on the results of simulation II in Section 4.2 of the main paper.
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C Supplementary material for the cervical cancer data (Section 5)

C.1 Sampling efficiency

To assess mixing and efficiency of MCMC sampling for the cervical cancer data, we report the

effective sample size (ESS) and the integrated autocorrelation time (IAT). ESS estimates the equiv-

alent number of independent draws corresponding to the dependent MCMC draws and is defined

as ESS = M/τIAT, where τIAT is the integrated autocorrelation time (IAT) and M is the number of

MCMC iterations after the burn-in phase. IAT is computed as τIAT = 1 + 2
∑K

k=1 ρ(k) using the

initial monotone sequence estimator (Geyer, 1992) for K, and ρ(k) is the empirical autocorrelation

at lag k.

Table C6 reports the IAT and the ESS for each regression effect and posterior inclusion probability

in the Poisson as well as the logit sub-model with Belgium as the reference country. IATs and

ESSs cannot be computed for posterior inclusion probabilities in clear-cut situations, i.e. where the

posterior inclusion probability is equal to one in all M iterations (marked with a star in Table C6).

Table C6: Cervical cancer data. Integrated autocorrelation times (IAT) and effective sample sizes

(ESS) of parameter estimates and inclusion probabilities in the Poisson and logit sub-model (with

reference country Belgium).

Effect Inclusion

Model IAT ESS IAT ESS

Poisson β0 7.4 4027.8 - -

β1 12.9 2332.5 1.0 30002.8

β2 8.8 3393.7 11.2 2671.7

β3 13.6 2206.6 1.0 30002.0

β4 1.1 28073.1 ∗ ∗
β5 1.6 18334.8 ∗ ∗
β6 3.9 7701.7 ∗ ∗
β7 1.1 26361.0 1.4 21265.2

β8 1.2 26004.4 1.4 22213.1

β9 3.3 9039.4 3.5 8606.4

β10 4.1 7309.2 6.0 5008.3

β11 16.7 1795.2 11.0 2734.6

β12 20.2 1488.2 17.5 1716.9

β13 1.0 29119.9 1.3 23889.6

β14 1.2 24563.5 1.4 21800.1

β15 3.0 9851.7 3.9 7646.6

Logit α0 (Belgium) 24.4 1227.2 - -

α1 (England) 946.6 31.7 39.1 767.3

α2 (France) 48.6 616.9 53.0 566.0

α3 (Italy) 23.1 1296.4 13.1 2291.3

The results are based on M= 30000 iterations (keeping only every 10th iterate of 300000 draws)

after a burn-in phase of 100000 draws. The ESSs are highest for regression effects with estimated

posterior inclusion probabilities close to the boundaries zero and one. Hence, sampling efficiency in

the Poisson sub-model is lowest (in terms of the largest values for IAT) for regression effects β11
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and β12 with posterior inclusion probabilities close to 0.5. As expected, IATs are higher in the logit

model, especially for the effect α1 (England), where separation is present due to perfect reporting

in this country.

Sampling efficiency for the logit sub-model with reference category Belgium is compared to the

respective results with reference category England in Table C7. We observe that the IATs are

lower for all country effects (except for the baseline England) when Belgium is used as the reference

category and conclude that it is preferable to use the country Belgium as the reference category.

Table C7: Cervical cancer data. Integrated autocorrelation times (IAT) and effective sample sizes

(ESS) of parameter estimates and inclusion probabilities in the logit sub-model (with reference

category England).

Effect Inclusion

Model IAT ESS IAT ESS

Logit α0 (England) 442.8 67.8 - -

α1 (Belgium) 195.2 153.7 ∗ ∗
α2 (France) 389.0 77.1 10.0 3002.0

α3 (Italy) 361.4 83.0 35.9 836.0

C.2 Results for the selected model

Based on posterior inclusion probabilities above 0.5, the selected model contains the covariates x1,

x3 - x6, x11, x12 and x15 in the Poisson and w1 and w2 in the logit sub-model. Table C8 reports the

posterior means and 95%-HPD intervals of this model and Table C9 shows integrated autocorrelation

times and effective sample sizes of its parameters.

Table C8: Cervical cancer data. Posterior means with 95%-HPD intervals for the selected model

(with reference country Belgium).

Covariate Post. mean 95%-HPD

Poisson β0 Intercept (Belgium; 25-34) 2.104 ( 1.964, 2.248)

β1 England 0.396 ( 0.288, 0.501)

β3 Italy -0.980 (-1.078,-0.878)

β4 35-44 1.609 ( 1.493, 1.726)

β5 45-54 2.699 ( 2.586, 2.814)

β6 55-64 2.815 ( 2.700, 2.931)

β11 France 45-54 -0.246 (-0.357,-0.133)

β12 France 55-64 -0.161 (-0.271,-0.048)

β15 Italy 55-64 0.238 ( 0.134, 0.342)

Logit α0 Intercept (Belgium) 1.715 ( 1.210, 2.215)

α1 England 3.400 ( 0.561, 6.552)

α2 France -0.728 (-1.217,-0.241)
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Table C9: Cervical cancer data. Integrated autocorrelation times (IAT) and effective sample

sizes (ESS) of parameter estimates in the Poisson and logit sub-model for the selected model (with

reference country Belgium).

Model IAT ESS

Poisson β0 10.5 2857.0

β1 26.5 1130.4

β3 3.4 8949.4

β4 1.0 29207.2

β5 1.1 28443.4

β6 1.1 28063.4

β11 3.9 7755.4

β12 4.1 7325.6

β15 1.1 27021.6

Logit α0 25.2 1188.4

α1 1456.8 20.6

α2 10.4 2876.9

References

Fahrmeir, L., Kneib, T. and Konrath, S. (2010). Bayesian regularisation in structured additive

regression: a unifying perspective on shrinkage, smoothing and predictor selection. Statistics and

Computing, 20, 203–219.

Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7, 473–483.

Malsiner-Walli, G. and Wagner, H. (2011). Comparing spike and slab priors for Bayesian variable

selection. Austrian Journal of Statistics, 40, 241–264.

Wagner, H. and Duller, C. (2012). Bayesian model selection for logistic regression models with

random intercept. Computational Statistics and Data Analysis, 56, 1256–1274.

14


	Identifiability (additional figures)
	Further simulation studies
	Sensitivity to the prior distribution (Simulation I)
	Sensitivity to the prior distribution (Simulation II)
	Simulation II with partial validation data

	Supplementary material for the cervical cancer data (Section 5)
	Sampling efficiency
	Results for the selected model


