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Abstract

This document contains two main parts. In Appendix A, the data of the case study discussed in Alonso
et al. (2015) are analyzed. All analyses are conducted with the new R package EffectTreat. In Appendix B
(starting on page 13), some model checks are provided.

Appendix A. Individual causal treatment effects: Case study analysis us-
ing the R package EffectTreat

In personalized medicine one wants to determine, for a given patient and his outcome on a pretreatment
predictor, which treatment will likely be more beneficial for him. The R library EffectTreat allows for the
quantification of the predictive causal association, i.e., the association between the pretreatment predictor
and the individual causal treatment effect. In this Appendix, the use of the library is illustrated based on the
data of the case study discussed in Alonso et al. (2015). The data are introduced in Section 1 and analyzed
in Sections 2-5.

1 The dataset: A clinical trial in opiate/heroin addiction

The data come from a randomized clinical trial in which the clinical utility of buprenorphine/naloxone (ex-
perimental treatment) was compared to clonidine (control treatment) for a short-term (13-day) opiate/heroin
detoxification treatment. Before and after the treatment, patients were assessed for relapse, withdrawal
symptoms, and treatment satisfaction.

Here, the potential pretreatment variable (S) is the Clinical Opiate Withdrawal Scale (COWS) score at
screening. The COWS is an 11-item interviewer-administered questionnaire designed to provide a descrip-
tion of signs and symptoms of opiate withdrawal (e.g., sweating, runny nose, etc). A higher COWS score is
indicative for more withdrawal symptoms. The number of days that heroin was used in the 30 days prior to
the second follow-up (the second follow-up took place 3 months after the start of the treatment) was used
as the true endpoint T.

Data were available for 335 patients, of whom n = 106 received the active control clonidine and n =
229 received the experimental treatment buprenorphine/naloxone. Study drop-out was substantial: T was
observed for n = 104 patients and missing for 231 patients. Multiple imputation (MI) was used to handle
the missing data in all the analyses and 5 imputed date sets were used. When a complete case analysis
was conducted, the results were similar and the substantive conclusions were identical (data not shown). A
detailed description of the results and the appropriate R code to carry out the complete case analysis can be
obtained by contacting the authors (wim.vanderelst@gmail.com).

The data are not included in the EffectTreat library as they are not in the public domain. Nonetheless,
the data can be downloaded (after registration) from the National Institute of Drug Abuse website (http://
datashare.nida.nih.gov/protocol/data). In the following analyses the combined data of studies NIDA-
CTN-0001 and NIDA-CTN-0002 were used.
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2 Computing the Predictive Causal Association (PCA; ρψ)

After installation of the EffectTreat package in R (install.packages(“EffectTreat”)), the package is loaded
in memory:

library(EffectTreat)

The function PCA.ContCont (Predictive Causal Association in the Continuous Continuous case) imple-
ments a sensitivity analysis in which ρψ (PCA) is estimated across a set of plausible values for the unidenti-
fied correlation ρT0T1 (details in Alonso et al., 2015). This function requires the user to specify the following
main arguments:

• T0S= and T1S=: the correlations between the pretreatment predictor S and the true endpoint in the
control (ρT0S) and experimental (ρT1S) treatment groups.

• T0T0= and T1T1=: the variances of the true endpoint in the control (σT0T0) and experimental (σT1T1)
treatment groups.

• SS=: the variance of the pretreatment predictor S (σSS).

• T0T1=: a vector (or scalar) that specifies plausible values for the unidentifiable correlation (ρT0T1)
between the counterfactual outcomes T0 and T1. Default seq(-1, 1, by=.01), i.e., the values −1,
−0.99, −0.98, ..., 1.

In the opiate/heroin addiction study, ρ̂T0S = −0.3699 (p = 0.001) and ρ̂T1S = −0.3367 (p = 0.001). Notice
that the negative correlations between S and T0/T1 indicate that patients who have higher S = COWS scores
(more withdrawal symptoms at screening) tend to use less heroin in the 30-day interval after the treatment in
both treatment conditions. Importantly, the difference between ρ̂T1S and ρ̂T0S was not significant (p = 0.75).
Further, σ̂T0T0 = 83.2872, σ̂T1T1 = 95.6189, and σ̂SS = 356.2158. The following command is used to conduct
the analysis:

Results <- PCA.ContCont(T0S=-0.3699, T1S=-0.3367, T0T0=83.2872, T1T1=95.6189, SS=356.2158,
T0T1=seq(-1, 1, by=.01))

A summary of the results can be obtained by applying the summary() function to the fitted Results
object:

summary(Results)

##
## Function call:
##
## PCA.ContCont(T0S = -0.3699, T1S = -0.3367, T0T0 = 83.2872, T1T1 = 95.6189,
## SS = 356.2158, T0T1 = seq(-1, 1, by = 0.01))
##
##
## # Total number of matrices that can be formed by the specified vectors and/or scalars
## # of the correlations in the function call
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## 201
##
## # Total number of positive definite matrices
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## 175
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##
##
## # Predictive causal association (PCA) results summary
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## Mean (SD) PCA: 0.0088 (0.0065) [min: 0.0047; max: 0.0561]
## Mode PCA: 0.0057
##
## Quantiles of the PCA distribution:
##
## 5% 10% 20% 50% 80%
## 0.0048349119 0.0049663779 0.0052650549 0.0066422575 0.0103939852
## 90% 95%
## 0.0144561189 0.0198081950

The output shows that out of the 201 matrices that can be formed, based on the specified vector for
ρT0T1 and the identifiable variances and correlations, 175 were valid (positive definite) covariance matrices.
The subsequent section in the output shows that the mean ρψ = 0.0088, mode ρψ = 0.0057, and median
ρψ = 0.0066. Further, 95% of the ρψ values were ≤ 0.0198 and ρψ was at most 0.0561. These results clearly
show that in all ‘realities’ that are compatible with the observed data, ρψ is rather low. It can thus be
concluded that the accuracy by which a patient’s individual causal treatment effect on T (∆Tj = T1j − T0j)
can be predicted based on the COWS at screening is very poor.

The plot() function is a useful tool to further explore the frequency distribution of ρψ. For example,
plots of the relative frequencies (percentages) and cumulative frequencies can be requested by using the
Type=”Percent” and Type=”CumPerc” arguments in the plot() call:

plot(Results, Type="Percent", breaks=7) #histogram with percentages
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plot(Results, Type="CumPerc") #cumulative percentages
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These plots confirm the earlier claim that ρψ is rather low, irrespectively of the values assumed for the
unidentifiable correlation ρT0T1.

3 Relationship between ρT0T1 and PCA

In some applications one may want to explore in more detail some specific areas of the previous frequency
distributions. For instance, one may want to evaluate which assumptions for the unidentified correlation
ρT0T1 typically lead to a particular range of ρψ values. In this context, the CausalPCA.ContCont() function
(Causal diagram for the Predictive Causal Association in the Continuous Continuous case) can be a useful
tool. The function provides a causal diagram depicing the median ρT0T1 value for a specified range of values
of ρψ. The following arguments are needed:

• x=: a fitted object of class PCA.ContCont.

• Min=, Max=: the minimum and maximum values for ρψ that should be considered.

For example, the following code produces the causal diagrams for 0 < ρψ < 0.02 (an interval that contains
the lowest 95% of the ρψ values) and 0.02 < ρψ < 0.06 (the highest 5% of the ρψ values):

CausalPCA.ContCont(x = Results, Min = 0, Max = 0.02)
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CausalPCA.ContCont(x = Results, Min = 0.02, Max = 1)
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The lines connecting the pairs (S, T1) and (S, T0) give the estimates for the identifiable correlations
ρT1S and ρT0S. The lines are colored in red when the correlations are negative and thicker lines are used
for stronger correlations. As noted earlier, the negative correlations indicate that patients with more (less)
withdrawal symptoms take less (more) heroin in the 30 days interval after the treatment in both treatment
conditions (T0/T1). The line connecting the pair (T0, T1) gives the median for the unidentified correlation
between the counterfactuals that lead to the specified range of the ρψ values.

As it can be seen in the figures, a ρψ value between 0 and 0.02 is typically associated with ρT0T1 = 0.08.
This suggests that T0, the patient’s outcome under the control treatment (number of days that heroin is
taken if the patient received the control treatment), carries essentially no information on T1, the patient’s
outcome under the experimental treatment (number of days that heroin is taken if the patient received
the experimental treatment). On the other hand, a ρψ between 0.02 and 0.06 is typically associated with
ρT0T1 = 0.95. This suggests that the patient’s outcome under the control treatment carries a substantial
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amount of information on his outcome under the experimental treatment.
Although the data alone do not allow to discriminate between both scenarios (as ρT0T1 is not identifi-

able), expert opinion may be used to evaluate the biological plausibility of these two settings. For example,
given that both treatments are similar and T0, T1 are essentially repeated measures on the same patient, it
may be argued that the plausibility of independent potential outcomes is biologically questionable.

The relationship between ρT0T1 and ρψ can be further studied using the Effect.T0T1=TRUE argument in
the plot() call:

plot(Results, EffectT0T1=TRUE, PCA=FALSE)
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As it can be seen, ρψ is a monotonically increasing function of ρT0T1, but even when ρT0T1 is close to 1
ρψ is only about 0.06. A table containing all the combinations of ρT0T1, ρT0S and ρT1S that lead to valid (pos-
itive definite) covariance matrices and their corresponding PCA values can be obtained using the following
command:

TableResults <- cbind(Results$Pos.Def, Results$PCA)[order(Results$PCA),]

For example, the combinations of ρT0T1, ρT0S and ρT1S that lead to the lowest and highest ρψ values can
be obtained in the following way:

head(TableResults) # lowest PCC values

## T0T1 T0S T1S Results$PCA
## 1 -0.75 -0.3699 -0.3367 0.0047133521
## 2 -0.74 -0.3699 -0.3367 0.0047268584
## 3 -0.73 -0.3699 -0.3367 0.0047404814
## 4 -0.72 -0.3699 -0.3367 0.0047542229
## 5 -0.71 -0.3699 -0.3367 0.0047680845
## 6 -0.70 -0.3699 -0.3367 0.0047820682

tail(TableResults) # highest PCC values

## T0T1 T0S T1S Results$PCA
## 170 0.94 -0.3699 -0.3367 0.024980880
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## 171 0.95 -0.3699 -0.3367 0.027261200
## 172 0.96 -0.3699 -0.3367 0.030307023
## 173 0.97 -0.3699 -0.3367 0.034672001
## 174 0.98 -0.3699 -0.3367 0.041703753
## 175 0.99 -0.3699 -0.3367 0.056067743

From the previous outcomes it can be learned that ρψ = 0.0047 when ρT0T1 = −0.75 and ρψ = 0.0561
when ρT0T1 = 0.99 (about 12 times higher).

4 Is there a good pretreatment predictor?

A plot that depicts all the prediction mean squared error (PMSE) values in the opiate/heroin study based
on the fitted Results object can be obtained by using the Good.Pretreat=TRUE argument in the plot()
function:

plot(Results, Good.Pretreat=TRUE, PCA=FALSE)
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In most settings PMSE lies between 50 and 300 and thus Sj predicts ∆Tj with a mean squared error that
lies between about 7 and 17.5 days. Given that T= the number of days that heroin is used in a 30-day interval,
the previous level of accuracy seems to be rather unsatisfactory. A figure that shows the relation between
ρψ and δ can be obtained using the following command:

plot(Results$GoodSurr$PCA, Results$GoodSurr$delta, xlab=expression(rho[psi]),
ylab=expression(delta), col=0)
lines(Results$GoodSurr$PCA, Results$GoodSurr$delta)
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As expected, PMSE is a monotonically decreasing function of ρψ. It may also be useful to examine the
proportion of ‘realities’ for which a desired prediction accuracy is achieved. For example, the following code
can be used to obtain the percentage of realities in which the PMSE ≤ 50 (corresponding with an average
prediction error of about 7 days):

length(Results$GoodSurr$delta[Results$GoodSurr$delta<=50])/
length(Results$GoodSurr$delta)

## [1] 0.15428571

Thus the desired prediction accuracy is achieved in only about 15% of the realities compatible with the
data.

The plausibility of finding a good pretreatment predictor The function GoodPretreatContCont (Good
Pretreatment predictor in the Continuous Continuous setting) allows examining the plausibility of finding
a good pretreatment predictor S. The function requires the following arguments:

• T0T0= and T1T1=: the variances of the true endpoint in the control (σT0T0) and experimental conditions
(σT1T1).

• Delta=: the upper bound for the PMSE.

• T0T1=: a vector (or scalar) that specifies values for the unidentifiable correlation between the potential
outcomes ρT0T1.

For example, suppose that one wants to examine the plausibility of finding a pretreatment predictor S that
allows predicting ∆Tj with PMSE = 50 (corresponding with an average prediction error of about 7 days).
The following code can be used for that purpose:

MinSurr <- GoodPretreatContCont(T0T0=83.2872, T1T1=95.6189, Delta=50,
T0T1=seq(from=0, to=1, by=.01))

The results can be examined by applying the summary() and plot() functions to the fitted MinSurr
object:
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summary(MinSurr)

##
## Function call:
##
## GoodPretreatContCont(T0T0 = 83.2872, T1T1 = 95.6189, Delta = 50,
## T0T1 = seq(from = 0, to = 1, by = 0.01))
##
##
##
## # Rho2.Min results summary (Inf values are excluded)
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## Mean (SD) Rho^2_min: 0.3585 (0.3964) [min: -0.9675; max: 0.7205]
##
## Quantiles of the Rho2.Min distribution:
##
## 5% 10% 20% 50% 80% 90%
## -0.51205111 -0.22719865 0.10877474 0.51056900 0.66262713 0.69428703
## 95%
## 0.70799085
##
## Note. Some Rho2.Min values were negative. This indicates that the PMSE is so large that
## any Rho2.Min value suffices to achieve the desired prediction accuracy.

plot(MinSurr)
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As it can be seen, about 80% of the ρ2
min values were above 0.1088. This indicates that a candidate S

should produce a ρψ of (at least) about
√

0.1088 = 0.3298 to achieve the desired level of accuracy (PMSE=
50) in the prediction of the individual causal effects on T.
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5 Predicting ∆T based on S in an individual patient j

In practice, one is interested in the prediction of a patient’s individual causal treatment effect (∆Tj) given the
patient’s observed Sj. The function Predict.Treat.ContCont (Predict Treatment effect in the Continuous
Continuous case) is useful in this context. It requires the following arguments:

• x=: a fitted object of class PCA.ContCont.

• S=: the observed pretreatment value Sj for a patient.

• Beta=: the expected causal treatment effect on T. Under SUTVA, β = E(T1j − T0j) can be estimated
as β = E(Tj | Zj = 1)− E(Tj | Zj = 0), i.e., the difference between the observed means of Tj in the
experimental and control treatment groups, respectively.

• SS=: the variance of S.

• mu_S=: the mean of S.

In the heroin/opiate detoxification dataset, β̂ = −0.9314, σ̂SS = 356.2158, and µ̂S = 84.7994. Notice that
the negative β indicates that the average number of days that heroin is used post-treatment was slightly
smaller in the experimental treatment group (µ̂E = 11.6437) than in the control treatment group (µ̂C =
12.5751) – albeit the difference was not significant, p = 0.632.

Suppose that a patient scores 60 on the COWS (i.e., a low level of opiate withdrawal symptoms). The
following code can be used to predict ∆Tj for this patient:

Pred_S_60 <- Predict.Treat.ContCont(x=Results, S=60, Beta=-0.9314, SS=356.2158, mu_S=84.7994)

The results can be examined by applying the summary() function to the fitted object Pred_S_60:

summary(Pred_S_60)

##
## Function call:
##
## Predict.Treat.ContCont(x = Results, S = 60, Beta = -0.9314, SS = 356.2158,
## mu_S = 84.7994)
##
##
## # Predicted (Mean) Delta_T_j | S_j
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## -1.0409279
##
##
## # Variances and 95% support intervals of Delta_T_j | S_j for different values of rho_T0T1
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## rho_T0T1 Var Delta_T_j | S_j 95% supp. int. around Delta_T_j | S_j
##
## (min. value) -0.750 312.760 [-35.702911; 33.621056]
## (max. value) 0.990 2.203 [-3.9502469; 1.8683912]
## (median value) 0.120 157.481 [-25.636834; 23.554979]
## (mean value) 0.120 157.481 [-25.636834; 23.554979]
##
##
##
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## # Proportion of 95% support intervals for Delta_T_j | S_j
## that include 0, are < 0, and are > 0
## #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
##
## 0 included in support interval: 1 (obtained for rho_T0T1 values in range [-0.75; 0.99])
## Entire support interval below 0: 0
## Entire support interval above 0: 0

The expected ∆Tj|Sj = 60 equals −1.0409. Thus, the patient is expected to have about 1 more heroin-
free day in the post-treatment interval with the experimental treatment than with the control treatment.
Importantly, the expected ∆Tj|Sj = 60 remains constant no matter what assumption regarding ρT0T1 is
made. However, the assumed ρT0T1 does affect the variance of ∆Tj|Sj = 60. This can be observed in the
second part of the output, where variances and 95% support intervals for ∆Tj|Sj = 60 are given for different
ρT0T1 values. For example, the 95% support interval around ∆Tj|Sj = 60 is [−35.7029; 33.6211] when it
is assumed that ρT0T1 = −0.750 (the minimum value of ρT0T1 that is compatible with the observed data),
whereas the 95% support interval around ∆Tj|Sj = 60 is [−3.9502; 1.8684] when it is assumed that ρT0T1 =
0.990 (the maximum value of ρT0T1).

The final part of the output provides an overview of the proportion of support intervals for ∆Tj|Sj =
60 that included 0 (no difference between treatments expected for the patient), that lay entirely below 0
(experimental treatment more beneficial), and that lay entirely above 0 (control treatment more beneficial).
As it can be seen, the 95% support interval of ∆Tj|Sj = 60 included 0 in all cases.

The results can be graphically displayed by applying the plot() function to the fitted object Pred_S_60.
By default, the distribution of ∆Tj|Sj is shown for the median ρT0T1 value, i.e., for ρT0T1 = 0.120. The
following command can be used to obtain the plot:

plot(Pred_S_60, xlim=c(-60, 50), ylim=c(0, .035))
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∆Tj|Sj

ρT0T1= 0.12

The vertical black dashed line is the expected ∆Tj|Sj = 60 value, and the dashed green lines depict the
95% support interval. In line with the earlier results, the 95% support interval for ∆Tj|Sj = 60 assuming
ρT0T1 = 0.120 contains 0 and thus no difference between both treatments is expected for the patient.

It is also possible to request the 95% support interval for a particular value of ρT0T1 by using the Specific.T0T1=
argument in the plot() call. For example, the 95% support interval around ∆Tj|Sj assuming ρT0T1 = 0.5
can be requested using the following command:
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plot(Pred_S_60, Specific.T0T1 = 0.5, xlim=c(-60, 50), ylim=c(0, .045))
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As expected, the width of the 95% support interval decreases when ρT0T1 increases. A plot that shows
the relation between ρT0T1 and the width of the 95% support interval can be obtained with the following
command:

plot(x=Pred_S_60$T0T1, y= (sqrt(Pred_S_60$Var_Delta.T_S)*1.96)*2, type="l",
xlab=expression(rho[T0T1]), ylab=expression(paste("Width 95% CI of ",
Delta, T[j], "|", S[j])))
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The plot shows that if one wants to be 95% confident that the true ∆Tj|Sj = 60 deviates at most 10 days
(in positive or negative direction) from the expected ∆Tj|Sj (width of the 95% support interval ≤ 20), then
ρT0T1 ≥ 0.85.
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Appendix B. Distributions of the endpoints

In this Appendix the assumptions underlying the causal inference model introduced in Alonso et al. (2015)
are evaluated using the identifiable marginals. Notice that although the entire model is basically uniden-
tifiable, the bivariate normality of (S0, T0) and (S1, T1) and univariate normality of the corresponding
marginals can be assessed with the data at hand. The results were similar for all five multiply imputed
datasets. For succinctness, attention is restricted here to only one of the multiply imputed datasets.

Bivariate density plots for (S0, T0) and (S1, T1) are shown in Figure 1. Histograms S and T in the control
and experimental treatment conditions are shown in Figure 2.

As it can be seen, the normality assumption seems reasonable for COWS but is violated for T in both
treatment conditions. Likewise, bivariate normality is questionable.
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Figure 1: Bivariate density plots of S = COWS and T = heroin use in the control (left) and experimental
(right) treatment groups.

Obviously, the findings of the previous sections are predicated on the assumption that the potential
outcomes are continuous and normally distributed. However, many of these results will still be valid for
non-normal potential outcomes, although their interpretation will change if the normality assumption is
questioned. For instance, the correlation between the individual causal treatment effect and the pretreat-
ment predictor could still be quantified using ρψ, but these expressions could not be interpreted any longer
as the predictive causal association. Indeed, even though ρψ will still be a valid measure of causal corre-
lation, the equivalence between association and correlation will be broken if the normality assumption is
dropped. One may also consider transforming the response variable in order to make the distributional as-
sumptions more plausible, but this may affect the interpretation of the results. In general, departures from
normality will have just a mild effect on the estimation of the parameters of interest but, as already pointed
out, the interpretation of the results will become more restricted and limited.
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Figure 2: Histograms of S = COWS and T = heroin use in the control (left) and experimental (right) treatment
groups.
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