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1 Introduction

pcox is an R program to fit penalized Cox models with smooth effects of covariates, using a

penalized spline basis. These effects can either be smooth over the domain of the covariate,

smooth over the time domain, or both. Both scalar and functional predictors are supported.

Functional predictors can either be measured along their own domain, or along the same time

domain as the hazard function. We refer to the former type of predictor as a static functional

covariate, and the latter as a time-varying covariate.

These definitions result in the following general model:

log λi(t) = log λ0(t) + f(xi, t) + g(Xi, t) + h(Zi, t) (1)

In this notation λi(t) is the hazard function for subject i and λ0(t) is the baseline hazard function;

xi, Xi, and Zi are scalar, static functional, and time-varying functional covariates, respectively;

and f , g, and h are unknown functions we want to estimate. As proposed above this model is

very general, but in practice we will likely want to parameterize the way in which each covariate

affects the hazard function. Table 1 summarizes the different parameterizations for f , g, and

h, and the corresponding syntax for the pcox formula. These terms will be discussed further in

Section 3.
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Table 1: Summary of the types of terms allowed in an pcox formula.

Time Effect Covariate Effect Term Formula Implementation in pcox

Scalar Predictors:
Static Linear βx x

Static Nonlinear β(x) s(x)

Varying Linear β(t)x tv(x)

Varying Nonlinear β(x, t) tv(s(x))

Baseline Functional Predictors:
Static Linear

∫
S β(s)Xi(s) ds lf(X), lf.vd(X)

Static Nonlinear
∫
S β[s,Xi(s)] ds af(X)

Varying Linear
∫
S β(s, t)Xi(s) ds tv(lf(X)), tv(lf.vd(X))

Varying Nonlinear
∫
S β[s, t,Xi(s)] ds tv(af(X))

Concurrent Functional Predictors:
Static Linear βZi(t) Z or clf(Z)
Static Nonlinear β[Zi(t)] s(Z) or caf(Z)
Varying Linear β(t)Zi(t) tv(Z) or tv(clf(Z)) or clf(Z, tv=TRUE)

Varying Nonlinear β[Zi(t), t] tv(caf(Z)) or caf(Z, tv=TRUE)

Historical Functional Predictors:

Static Linear
∫ t
δ(t)

β(s)Zi(s) ds hlf(Z)

Static Nonlinear
∫ t
δ(t)

β[s, Zi(s)] ds haf(Z)

Varying Linear
∫ t
δ(t)

β(s, t)Zi(s) ds tv(hlf(Z)) or hlf(Z, tv=TRUE)

Varying Nonlinear
∫ t
δ(t)

β[s, t, Zi(s)] ds tv(haf(Z)) or haf(Z, tv=TRUE)

Random Effects:

The basic mechanism for modeling the nonparametric effects is to apply a penalized spline

basis to the functions f , g, and h in (1). The model is then estimated by maximizing the penalized

partial likelihood (PPL),

`(p)ρ (θ) =
∑
i:δi=1

ηi(θ, t)− log

 ∑
j:Yj≥Yi

eηj(θ,t)

− ρP (θ) (2)

where θ are the model parameters (e.g., spline coefficients), ηi(θ, t) = f(xi, t)+g(Xi, t)+h(Zi, t)

is the linear predictor for subject i at time t, ρ is a smoothing parameter (possibly a vector),

and P (θ) is an appropriate penalty on the parameters. For a given ρ, the PPL is maximized
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by Newton-Raphson. The smoothing parameter(s) ρ may be optimized by a number of different

criteria: the cross-validated likelihood (CVL), a likelihood-based information criterion (AIC, AICc,

or EPIC), maximum likelihood (ML), or restricted maximum likelihood (REML). We intend to

make each of these optimization criteria available in pcox, except for the CVL, which is quite

computationally intensive.

pcox is essentially a wrapper for four other R packages: survival and coxme for fitting

penalized Cox models, and mgcv and refund for processing the covariates. Section 2 describes

how the models are fit, and Section 3 describes how the covariates are processed.

2 Model Fitting

2.1 Basic structure

We take advantage of existing implementations of penalized Cox models in R. Two functions

that fit these models are the coxph() function from the survival package, and the coxme()

function from the package of the same name. The former optimizes the smoothing parameter

using a user-defined control function, whereas the latter is optimized specifically through ML or

REML. pcox is essentially a wrapper for these two functions. If the user chooses to optimize the

model via ML or REML, coxme() is called, otherwise coxph() is called.

2.2 Specifying penalized terms in a coxph formula

Instructions for defining penalized terms in a coxph formula are found in ?. The idea is to create

a coxph.penalty object, which is the model matrix corresponding to the term, with a number

of attributes defining the penalization. These attributes include a function to compute the first

and second derivatives of the penalty, the control function for the “outer” loop to optimize the

smoothing parameter, and parameters for these functions. I have created the function acTerm()

to convert an mgcv smooth term (created by calling smoothCon() into a coxph.penalty object.
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2.3 Specifying penalized terms in a coxme formula

coxme was designed to fit Gaussian frailty models, where the user enters the distribution of

the random effects by supplying a variance matrix. This variance corresponds to the inverse of

the penalty matrix from a penalized Cox model. Unfortunately, many of the common penalty

matrices that we use are non-invertible. I am currently working with the developer of coxme,

Terry Therneau, to allow coxme() to accept the penalty matrix instead of the variance matrix.

3 Covariate Processing

Penalized spline bases are implemented for generalized additive models very flexibly by the mgcv

package; we take advantage of this flexibility by allowing for mgcv-style model terms. This allows

the choice of basis, number of knots, and form of the penalty to be selected by the user.

Terms involving functional predictors can be specified using certain terms from the refund

package, which creates the appropriate mgcv-style regression term.

Time varying covariates can either be included as concurrent terms or historical terms. Con-

current terms allow only the value of the covariate at time t to impact the hazard at time t; this

is the traditional way of handling time-varying covariates in a Cox model. Historical terms allow

the hazard at time t to depend on the entire history of the covariate up to and including time t.

3.1 Time-varying effects

Time varying effects can be specified as a tv() term.

4 Examples

I was just getting down to implementing the code for concurrent functional predictors. Recall

that my plan was to have these terms indicated just as a matrix in the model formula, i.e.
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‘Surv(time,event) Z‘ for a matrix ‘Z‘. However, this doesn’t let us specify the time points that

correspond to the columns of ‘Z‘ - it requires making an assumption on how these columns relate

to the ‘time‘ variable (i.e., there needs to be one column for each time point). It also doesn’t

allow for any other options regarding how ‘Z‘ is processed - I can’t think of any of these right

now that we might want, but it may come up.

A much more flexible way of specifying these terms would be as a function, e.g. ‘clf(Z)‘

for a ”concurrent linear function” and ‘caf(Z)‘ for a ”concurrent additive function”. This would

correspond to how we allow for historical terms with ‘hlf()‘ and ‘haf()‘.

Another option is to drop the ”l” and ”a” for all of these functions. So we would just have

‘hf()‘ and ‘cf()‘, both of which would have an argument ‘additive‘ which defaults to ‘FALSE‘.
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