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versität Zürich, Switzerland

Address for correspondence: Sarah Brockhaus, Institut für Statistik, Ludwig-
Maximilians-Universität München, Ludwigstraße 33, D – 80539 München, Germany.
E-mail: sarah.brockhaus@stat.uni-muenchen.de.
Phone: (+49) 89 2180 2248.
Fax: (+49) 89 2180 5308.

Abstract: In the online appendix we show how the identifiability constraints are
enforced by using suitable transformations of the design matrix. Then we give an ex-
ample of data simulated for the simulation study in the paper and we show results on
run-time. As an application for function-on-function regression the Canadian climate
data is analyzed, regressing precipitation curves on temperature curves and climatic
regions, incorporating spatially dependent residual curves. In order to compare the
framework of FLAMs to existing models we compare results for the Canadian weather
data with results from Scheipl et al. (2014). In addition, a table summarizing char-
acteristics of the FLAM, the penalized likelihood approach based on mixed models
(Scheipl et al., 2014) and the Bayesian wavelet approach (Meyer et al., 2013) is given.
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gression; varying coefficient models

A Identifiability constraint

Consider a model ξ(Yi(t)) = β0(t) + hj(x)(t), with smooth intercept β0(t) and an
effect hj(x)(t) that contains an intercept β0(t) as special case. For the effects in Table
1, this is the case for the smooth effect γ(z, t) and smooth interaction f(z1, z2, t), the
group-specific intercept bg(t) and smooth residual ei(t). The problem is that such a
model is not identifiable as

ξ(Yi(t)) = {β0(t) + h̄j(x)(t)}+ {hj(x)(t)− h̄j(x)(t)} = β̃0(t) + h̃j(x)(t)
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yields the same fit with a different parametrization for h̄j(x)(t) = EX(hj(X)(t)), or re-
placing the expectation by the mean for concrete data, for h̄j(x)(t) = N−1

∑
i hj(xi)(t).

Scheipl et al. (2014) pointed out that standard sum-to-zero constraints
∑

i,t hj(xi)(t) =
0 are not suitable for regression models with functional response. A suitable constraint
is that the mean effect of each covariate should be zero in each point t:

N−1
∑

i
hj(xi)(t) = 0 ∀t.

We now show how to embed this constraint within the array framework of the FLAM.
We define B as the NG×KYKj design matrix with rows

(
bj(xi)

> ⊗ bY (tg)
>) defined

as in equation (2.2). B is the tensor product of the two marginal design matrices
B = Bj⊗BY , withBj having bj(xi)

> as rows andBY having bY (tg)
> as rows. In this

notation the response would be concatenated to a 1×NG vector (Y1(t1), . . . , YN(tG))>.
Then the sum-to-zero-constraint over t can be represented as a linear constraint on
the coefficient vector by enforcing Cθ = 0, with C = (1>N ⊗ IG)B, where 1N is the
vector of lengthN containing ones and IG is theG-dimensional identity matrix. Wood
(2006, sec. 1.8.1) implements linear constraints by rewriting the model in terms of
KY (Kj−1) unconstrained parameters through a change of basis for the design matrix
B. For this the full QR decomposition of C> is needed:

C> = [Q : Z]

[
R
0

]
= QR,

where [Q : Z] forms a KYKj ×KYKj orthonormal matrix and R is a G× G upper
triangular matrix. The transformed design matrix is obtained by the multiplication
of the original design matrix with the transformation matrix Z yielding BZ.

To apply this method for implementing a linear constraint in a FLAM, it is necessary
to do the transformation on the marginal design matrices BY and Bj. Therefore we
rewrite C> depending on the marginal bases as C> = ((1>N ⊗ IG)(Bj ⊗ BY ))> =
(B>j 1N)⊗B>Y and use the QR decompositions of B>j 1N and B>Y whose components
are indexed by j and Y respectively:

C> =

(
[Qj : Zj]

[
Rj

0

])
⊗
(

[QY : ZY ]

[
RY

0

])
= ([Qj : Zj]⊗ [QY : ZY ])

([
Rj

0

]
⊗
[
RY

0

])
= [Q : Z]

[
R
0

]
.

Thus we can calculate the transformation matrix Z as Z = (Zj ⊗ [QY : ZY ]) and we
obtain the transformed design matrix as

BZ = (Bj ⊗BY )(Zj ⊗ [QY : ZY ]) = (BjZj)⊗ (BY [QY : ZY ]).

As multiplication by the orthonormal matrix [QY : ZY ] only rotates the basis, this
rotation can be omitted. Thus only the transformation by Zj is necessary and it
suffices to compute the QR decomposition of B>j 1N ∈ RKj×1. It is not necessary to
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compute the QR decomposition of the complete design matrix B or even to construct
B explicitly. A basis transformation of the design matrix, BjZj, involves that the
penalty matrix Pj has to be transformed accordingly to Z>j PjZj.

Please note that while unrelated to identifiability, centering the covariates by sub-
tracting their mean (function) can in some cases additionally lend itself to nice inter-
pretations of the intercept as the overall mean.

B Simulation details: data example and run-time overview

Figure 1 shows the coefficient functions and simulated responses for a setting with
N = 100 observations, G = 30 grid points per trajectory and a signal-to-noise-ration
of 2.

In Figure 2 the computation times of the model fits in the simulation are given. The
optimal stopping iteration for FLAM is determined by 10-fold bootstrap over curves,
which was parallelized on 10 cores of a 64-bit linux platform. For each model fit the
optimal mstop was searched on a grid up to a maximum of 2000. One sees clearly that
FLAM scales better for a growing number of observations than the PFFR algorithm.

C Function-on-function regression: Canadian weather
data

The Canadian weather data is a well known functional data example (Ramsay and
Silverman, 2006). The data contains monthly temperature and precipitation at 35
different locations in Canada averaged over 1960 to 1994, see Figure 3. The weather
stations are assigned to four climatic zones (Atlantic, Pacific, Continental, Arctic) and
for each weather station the latitude and the longitude are given. The goal is to look
at the association between precipitation and temperature curves, taking into account
the climatic zones and the locations of the weather stations. As the precipitation
and temperature curves are averaged over several years they are no time series but
typical profiles and models relating precipitation to temperature thus do not have the
problem of the future influencing the past. For the same reason values in the end and
the beginning of a year should be similar.

We use this example to compare the results obtained by boosting with those of the
PFFR method (Scheipl et al., 2014). In the online appendix, Scheipl et al. (2014) use
the logarithm of precipitation as response variable and fit amongst others a model
with smooth effects of the four climatic zones, functional effect of temperature and
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Figure 1: Data example of simulation. Simulated data and estimates with number
of observations N = 100, number of grid-points G = 30 and signal-to-noise-ratio
SNRε = 2. True coefficients and response are depicted in the left column. Estimated
coefficients, predictions and residuals obtained by PFFR and by boosting are given
in the middle and right column. The upper three rows show the true coefficient
functions and their estimates. The forth row shows true and predicted response for
ten observations, the lowest panel the response with errors and the residuals for the
same observations.
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Figure 2: Computation time. The boxplots show the computation times for all com-
binations of sample size N , number of grid points G and signal to noise-ratio SNRε.

smooth spatially correlated residuals:

E(Yi(t)|rgi, tempi, i) = I(rgi = k)βk(t) +

∫
tempi(s)β(s, t)ds+ ei(t),

where Yi(t) is the log-precipitation over month t = 1, . . . , 12, I is the indicator
function, rgi is the region of the i-th station, βk(t) are the smooth effects per re-
gion, tempi(s) is the centered temperature over the month s = 1, . . . , 12, so that
N−1

∑
i tempi(s) = 0 ∀s, β(s, t) is the coefficient surface and ei(t) are smooth spa-

tially correlated residual curves. This model for a functional response thus depends on
a scalar and a functional covariate and includes smooth spatially correlated residuals
in addition to allowing for error terms εit = Yi(t)−E(Yi(t)|xi) uncorrelated along T .

To set up effects in the model with functional response we use formula (2.2). The basis
over the domain of the response bY (t) is a cyclic P-spline basis in all effects to achieve
similarity between the coefficient estimates for January and December. For the effect
in the functional covariate temperature, we set up the basis bj(x(s)) analogously to
equation (6.2). We use a cyclic B-spline basis over time combined with the functional
observations and their integration weights plus a squared difference matrix as penalty.
The region-specific smooth effects and the smooth residuals are linear effects in the
covariates –dummies for the regions and for each curve, respectively– of the form
xβ(t). As the intercept is included in the region-specific effect, the base-leaner is
bj(x)> = (x), with x being a dummy-vector of length 4. For the smooth residuals
ei(t) we enforce the default sum-to-zero-constraint at each t, c.f. Section 2 and the
online appendix A. For the region specific effect we use a Ridge-penalty by setting the
penalty to the four-dimensional identity matrix Pj = I4. The spatial correlation of the
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Figure 3: Canadian weather data. Monthly average temperature and log-precipitation
at 35 locations in Canada. Regions are coded by colors and different line types.

residual curves is accommodated by using the inverse of a spatial correlation matrix
as penalty matrix Pj. Following Scheipl et al. (2014), we use a Matérn correlation
matrix with smoothness parameter 0.5 and range 310 kilometers, which implies a
rather strong correlation.

The optimal stopping iteration for 25-fold bootstrapping over curves is so small that
the base-learner for smooth residual curves is not selected (mstop=49). If the optimal
stopping iteration is determined by leaving-one-curve-out cross-validation, it can be
seen that for three weather stations the out-of-bag prediction is quite bad and getting
worse for higher mstop, causing the optimum of the mean to be very small. Those
three stations are Pr. Ruppert (14), Kamploos (15) and Resolute (34) (numbers in
brackets correspond to numbers in Figure 5). When looking at the median over the
squared errors the optimal stopping iteration is much higher (mstop=750) so that the
base-learner for the smooth residuals is selected into the model. As the effects for
region and temperature are very similar irrespective of the number of boosting itera-
tions, we limit the representation of results to the model with mstop=750, as it includes
all effects. Figure 4 shows the estimated coefficients for the regions and the effect of
temperature on log-precipitation. In general the precipitation is lowest in spring and
highest in summer. An exception is the Pacific region where the highest precipitation
values are measured in winter. Stations in the Atlantic region have the highest pre-
cipitations during the whole year. In the Continental region differences between the
seasons are most pronounced. The effect of temperature on log-precipitation changes
over the year. Higher temperatures in spring and summer are associated with lower
precipitation over the whole year whereas higher temperatures in autumn and win-
ter are associated with higher precipitation values. The association of temperature
and precipitation is stronger in the winter than in the summer. Figure 5 shows the
smooth residual curves. They vary in the range of -0.4 to 0.4. The most extreme
smooth residuals are estimated for the Pacific region, where precipitation is relatively
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Figure 4: Estimated coefficient functions. The estimated coefficients for the four
climatic regions are plotted with color coded regions (left panel). The coefficient
function for the functional effect of temperature is colored in red for positive values
and in blue for negative values (right panel).

variable on a small spatial scale indicating additional unmeasured covariates besides
the regional and spatial effects. The uncorrelated error terms εit are quiet small
compared to the smooth residual curves ei(t). Comparing the results obtained by
PFFR (Scheipl et al., 2014) and boosting, the estimates for the effects of region and
temperature are very similar. The estimated spatially correlated smooth residuals
are similar in part but different for some stations.

D Characteristics of different general frameworks for
regression with functional data

Table 1 gives an overview of the three very general different frameworks for regression
with functional data, the newly presented FLAM model estimated by boosting, the
PFFR model by Scheipl et al. (2014) and the Bayesian function-on-function regression
model by Meyer et al. (2013).
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Figure 5: Estimated residuals. The estimated smooth spatially correlated residual
curves ei(t) (lines) and the uncorrelated error terms εit (circles) are plotted with
regions color-coded. The locations of the weather stations are given in the map at
the bottom.
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Table 1: Overview table for general frameworks for regression with functional data summariz-
ing some characteristics of the FLAM models estimated by boosting, the penalized function-
on-function regression (PFFR) by Scheipl et al. (2014) and Bayesian function-on-function
regression by Meyer et al. (2013).

Characteristic boosting FLAM PFFR Bayesian FFR
GLM for functional response yes yes yes
general loss functions, yes no no
e.g. quantile regression
scalar response yes (yes)1 (distributed lag models)2

types of covariate effects many many many
variable selection, n > p yes no no
missing values yes yes no3

inference based on bootstrap Likelihood / Bayesian methods
mixed models

computational scalability
- for large n good fair fair
- for large G good fair good

1 for scalar-on-function regression see penalized functional regression models by Goldsmith et al. (2011)
2 for distributed lag models see Malloy et al. (2010)
3 but see Morris et al. (2006) for an imputation scheme in particular cases of missingness
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