A default Bayesian approach for regression on extremes

Stefano Cabras^{*†}, María Eugenia Castellanos[‡] and Dani Gamerman[§]

1 Electronic Appendix

The values of coefficients used in the simulation study are

$$\begin{array}{rcl} \boldsymbol{\beta} &=& (1,0,1,1) \\ \boldsymbol{\gamma} &=& (0,0.5,-0.3,0.3) \\ \boldsymbol{\alpha} &=& (1.55,0.7,-0.2,1.2) \end{array}$$

Perturbation terms ϵ_{ξ_i} , ϵ_{ν_i} and $\epsilon_{\lambda_i^*}$ are generated, independently, from a $N(0, \sigma_{\epsilon})$. They are added to the linear predictor

$$\begin{split} \xi_i &= \exp(\boldsymbol{x}_i^T \boldsymbol{\gamma} + \epsilon_{\xi_i}) - 1\\ \nu_i &= \exp(\boldsymbol{x}_i^T \boldsymbol{\beta} + \epsilon_{\nu_i})\\ \lambda_i^* &= (\boldsymbol{x}_i^{*T} \boldsymbol{\alpha} + \epsilon_{\lambda_i^*})^2, \end{split}$$

but they act exponentially and quadratically into the parameters of the Poisson-GPD model. Therefore, based on the values of regression coefficients, we fixed σ_{ϵ} to 0.1 and 0.5. In order to appreciate the amount of noise induced by these values of σ_{ϵ} , Figure 1 shows the true values of ξ_i , ν_i and λ_i^* along with a sample of perturbed values. When $\sigma_{\epsilon} = 0.5$ we can see, from Figure 1, that the true values of ξ_i , ν_i and λ_i^* can be very different from the perturbed ones. Therefore, for β , γ and α fixed in the simulation scenario, values of σ_{ϵ} larger than 0.5 are meaningless.

Figures 2 and 3 shows results for $\sigma_{\epsilon} = 0.1$, while Figures 4 and 5 for $\sigma_{\epsilon} = 0.5$. We can see that an increase of the noise, in the linear predictors, determines a degrading of posterior inference for a fixed n. Such degrading is attenuated by an increase of n or a larger observation period. However, while this is generally true for most of the coefficients, it is not true for the intercepts β_1 , γ_1 and α_1 . This effect is well known in the classical regression analysis.

^{*}Corresponding author.

[†]Department of Mathematics, University of Cagliari (Italy). Via Ospedale 72, 09124 Cagliari (Italy), Tel.: +390706758536, Fax: +390706758511. e-mail s.cabras@unica.it

[‡]Department of Statistics and Operation Research, Rey Juan Carlos University (Spain). C/ Tulipán, 28933, Móstoles (Spain). e-mail maria.castellanos@urjc.es

[§]Institute of Mathematics, Universidade Federal do Rio de Janeiro (Brazil). IM-UFRJ, Caixa Postal 68530, 21945-970 Rio de Janeiro, RJ (Brazil). e-mail dani@im.ufrj.br

Figure 1: Values of ξ , ν and λ^* varying with covariates along time. The true values are in bold and we can see a sample of the noised generated values.

Figure 2: Properties of posterior distribution for regression parameters of ξ and ν when the noise is $\sigma_{\epsilon} = 0.1$.

Figure 3: Properties of posterior distribution for regression parameters of λ^* when the noise is $\sigma_{\epsilon} = 0.1$.

Figure 4: Properties of posterior distribution for regression parameters of ξ and ν when the noise is $\sigma_{\epsilon} = 0.5$.

Figure 5: Properties of posterior distribution for regression parameters of λ^* when the noise is $\sigma_{\epsilon} = 0.5$.